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Vectors

I a vector is an ordered list of numbers
I written as



−1.1
0.0
3.6
−7.2



or
*....
,

−1.1
0.0
3.6
−7.2

+////
-

or (−1.1,0,3.6,−7.2)

I numbers in the list are the elements (entries, coefficients, components)
I number of elements is the size (dimension, length) of the vector
I vector above has dimension 4; its third entry is 3.6

I vector of size n is called an n-vector

I numbers are called scalars
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Vectors via symbols

I we’ll use symbols to denote vectors, e.g., a, X, p, β, Eaut

I other conventions: g, ~a

I ith element of n-vector a is denoted ai

I if a is vector above, a3 = 3.6

I in ai, i is the index

I for an n-vector, indexes run from i = 1 to i = n

I warning: sometimes ai refers to the ith vector in a list of vectors

I two vectors a and b of the same size are equal if ai = bi for all i

I we overload = and write this as a = b
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Block vectors

I suppose b, c, and d are vectors with sizes m, n, p

I the stacked vector or concatenation (of b, c, and d) is

a =


b
c
d


I also called a block vector, with (block) entries b, c, d

I a has size m + n + p

a = (b1,b2, . . . ,bm,c1,c2, . . . ,cn,d1,d2, . . . ,dp)
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Zero, ones, and unit vectors

I n-vector with all entries 0 is denoted 0n or just 0

I n-vector with all entries 1 is denoted 1n or just 1

I a unit vector has one entry 1 and all others 0

I denoted ei where i is entry that is 1

I unit vectors of length 3:

e1 =



1
0
0


, e2 =



0
1
0


, e3 =



0
0
1
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Sparsity

I a vector is sparse if many of its entries are 0

I can be stored and manipulated efficiently on a computer

I nnz(x) is number of entries that are nonzero

I examples: zero vectors, unit vectors
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Location or displacement in 2-D or 3-D

2-vector (x1,x2) can represent a location or a displacement in 2-D

x

x1

x2

x1

x2
x
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More examples

I color: (R,G,B)

I quantities of n different commodities (or resources), e.g., bill of materials
I portfolio: entries give shares (or $ value or fraction) held in each of n

assets, with negative meaning short positions
I cash flow: xi is payment in period i to us
I audio: xi is the acoustic pressure at sample time i

(sample times are spaced 1/44100 seconds apart)
I features: xi is the value of ith feature or attribute of an entity
I customer purchase: xi is the total $ purchase of product i by a customer

over some period
I word count: xi is the number of times word i appears in a document
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Word count vectors

I a short document:

Word count vectors are used in computer based document
analysis. Each entry of the word count vector is the number of
times the associated dictionary word appears in the document.

I a small dictionary (left) and word count vector (right)

word
in
number
horse
the
document



3
2
1
0
4
2



I dictionaries used in practice are much larger
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Vector addition

I n-vectors a and b and can be added, with sum denoted a + b

I to get sum, add corresponding entries:



0
7
3


+



1
2
0


=



1
9
3


I subtraction is similar
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Properties of vector addition

I commutative: a + b = b + a

I associative: (a + b) + c = a + (b + c)
(so we can write both as a + b + c)

I a + 0 = 0 + a = a

I a − a = 0

these are easy and boring to verify
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Adding displacements

if 3-vectors a and b are displacements, a + b is the sum displacement

a

ba + b
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Displacement from one point to another

displacement from point q to point p is p − q

p − q
p

q
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Scalar-vector multiplication

I scalar β and n-vector a can be multiplied

βa = (βa1, . . . , βan)

I also denoted aβ

I example:

(−2)


1
9
6


=



−2
−18
−12
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Properties of scalar-vector multiplication

I associative: (βγ)a = β(γa)

I left distributive: (β + γ)a = βa + γa

I right distributive: β(a + b) = βa + βb

these equations look innocent, but be sure you understand them perfectly
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Linear combinations

I for vectors a1, . . . ,am and scalars β1, . . . , βm,

β1a1 + · · · + βmam

is a linear combination of the vectors

I β1, . . . , βm are the coefficients

I a very important concept

I a simple identity: for any n-vector b,

b = b1e1 + · · · + bnen
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Example

two vectors a1 and a2, and linear combination b = 0.75a1 + 1.5a2

a1

a2

0.75a1

1.5a2

b
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Replicating a cash flow

I c1 = (1,−1.1,0) is a $1 loan from period 1 to 2 with 10% interest

I c2 = (0,1,−1.1) is a $1 loan from period 2 to 3 with 10% interest

I linear combination

d = c1 + 1.1c2 = (1,0,−1.21)

is a two period loan with 10% compounded interest rate

I we have replicated a two period loan from two one period loans
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Inner product

I inner product (or dot product) of n-vectors a and b is

aTb = a1b1 + a2b2 + · · · + anbn

I other notation used: 〈a,b〉, 〈a|b〉, (a,b), a · b

I example:



−1
2
2



T 

1
0
−3


= (−1)(1) + (2)(0) + (2)(−3) = −7

Introduction to Applied Linear Algebra Boyd & Vandenberghe 1.22



Properties of inner product

I aTb = bTa

I (γa)Tb = γ(aTb)

I (a + b)Tc = aTc + bTc

can combine these to get, for example,

(a + b)T (c + d) = aTc + aTd + bTc + bTd
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General examples

I eT
i a = ai (picks out ith entry)

I 1Ta = a1 + · · · + an (sum of entries)

I aTa = a2
1 + · · · + a2

n (sum of squares of entries)
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Examples

I w is weight vector, f is feature vector; wT f is score

I p is vector of prices, q is vector of quantities; pTq is total cost

I c is cash flow, d is discount vector (with interest rate r):

d = (1,1/(1 + r), . . . ,1/(1 + r)n−1)

dTc is net present value (NPV) of cash flow

I s gives portfolio holdings (in shares), p gives asset prices; pTs is total
portfolio value
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Flop counts

I computers store (real) numbers in floating-point format

I basic arithmetic operations (addition, multiplication, . . . ) are called floating
point operations or flops

I complexity of an algorithm or operation: total number of flops needed, as
function of the input dimension(s)

I this can be very grossly approximated

I crude approximation of time to execute: computer speed/flops

I current computers are around 1Gflop/sec (109 flops/sec)

I but this can vary by factor of 100
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Complexity of vector addition, inner product

I x + y needs n additions, so: n flops

I xTy needs n multiplications, n − 1 additions so: 2n − 1 flops

I we simplify this to 2n (or even n) flops for xTy

I and much less when x or y is sparse
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Superposition and linear functions

I f : Rn → R means f is a function mapping n-vectors to numbers

I f satisfies the superposition property if

f (αx + βy) = αf (x) + βf (y)

holds for all numbers α, β, and all n-vectors x,y

I be sure to parse this very carefully!

I a function that satisfies superposition is called linear
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The inner product function

I with a an n-vector, the function

f (x) = aTx = a1x1 + a2x2 + · · · + anxn

is the inner product function

I f (x) is a weighted sum of the entries of x

I the inner product function is linear:

f (αx + βy) = aT (αx + βy)
= aT (αx) + aT (βy)
= α(aTx) + β(aTy)
= αf (x) + βf (y)
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. . . and all linear functions are inner products

I suppose f : Rn → R is linear

I then it can be expressed as f (x) = aTx for some a

I specifically: ai = f (ei)

I follows from

f (x) = f (x1e1 + x2e2 + · · · + xnen)
= x1f (e1) + x2f (e2) + · · · + xnf (en)
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Affine functions

I a function that is linear plus a constant is called affine

I general form is f (x) = aTx + b, with a an n-vector and b a scalar

I a function f : Rn → R is affine if and only if

f (αx + βy) = αf (x) + βf (y)

holds for all α, β with α + β = 1, and all n-vectors x, y

I sometimes (ignorant) people refer to affine functions as linear
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Linear versus affine functions

f is linear g is affine, not linear

x

f (x)

x

g(x)
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First-order Taylor approximation

I suppose f : Rn → R

I first-order Taylor approximation of f , near point z:

f̂ (x) = f (z) +
∂f
∂x1

(z)(x1 − z1) + · · · + ∂f
∂xn

(z)(xn − zn)

I f̂ (x) is very close to f (x) when xi are all near zi

I f̂ is an affine function of x

I can write using inner product as

f̂ (x) = f (z) + ∇f (z)T (x − z)

where n-vector ∇f (z) is the gradient of f at z,

∇f (z) =
(
∂f
∂x1

(z), . . . ,
∂f
∂xn

(z)
)
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Example

z

f̂ (x)

f (x)
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Regression model

I regression model is (the affine function of x)

ŷ = xT β + v

I x is a feature vector; its elements xi are called regressors

I n-vector β is the weight vector

I scalar v is the offset

I scalar ŷ is the prediction
(of some actual outcome or dependent variable, denoted y)
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Example

I y is selling price of house in $1000 (in some location, over some period)

I regressor is
x = (house area, # bedrooms)

(house area in 1000 sq.ft.)

I regression model weight vector and offset are

β = (148.73,−18.85), v = 54.40

I we’ll see later how to guess β and v from sales data
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Example

House x1 (area) x2 (beds) y (price) ŷ (prediction)

1 0.846 1 115.00 161.37
2 1.324 2 234.50 213.61
3 1.150 3 198.00 168.88
4 3.037 4 528.00 430.67
5 3.984 5 572.50 552.66
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Norm

I the Euclidean norm (or just norm) of an n-vector x is

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n =

√
xTx

I used to measure the size of a vector

I reduces to absolute value for n = 1
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Properties

for any n-vectors x and y, and any scalar β

I homogeneity: ‖ βx‖ = | β |‖x‖
I triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖
I nonnegativity: ‖x‖ ≥ 0

I definiteness: ‖x‖ = 0 only if x = 0

easy to show except triangle inequality, which we show later

Introduction to Applied Linear Algebra Boyd & Vandenberghe 3.3



RMS value

I mean-square value of n-vector x is

x2
1 + · · · + x2

n

n
=
‖x‖2

n

I root-mean-square value (RMS value) is

rms(x) =

√
x2

1 + · · · + x2
n

n
=
‖x‖√

n

I rms(x) gives ‘typical’ value of |xi |
I e.g., rms(1) = 1 (independent of n)

I RMS value useful for comparing sizes of vectors of different lengths
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Norm of block vectors

I suppose a,b,c are vectors

I ‖(a,b,c)‖2 = aTa + bTb + cTc = ‖a‖2 + ‖b‖2 + ‖c‖2

I so we have

‖(a,b,c)‖ =
√
‖a‖2 + ‖b‖2 + ‖c‖2 = ‖(‖a‖, ‖b‖, ‖c‖)‖

(parse RHS very carefully!)

I we’ll use these ideas later
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Chebyshev inequality

I suppose that k of the numbers |x1 |, . . . , |xn | are ≥ a

I then k of the numbers x2
1, . . . ,x

2
n are ≥ a2

I so ‖x‖2 = x2
1 + · · · + x2

n ≥ ka2

I so we have k ≤ ‖x‖2/a2

I number of xi with |xi | ≥ a is no more than ‖x‖2/a2

I this is the Chebyshev inequality

I in terms of RMS value:

fraction of entries with |xi | ≥ a is no more than
(

rms(x)
a

)2

I example: no more than 4% of entries can satisfy |xi | ≥ 5 rms(x)
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Distance

I (Euclidean) distance between n-vectors a and b is

dist(a,b) = ‖a − b‖
I agrees with ordinary distance for n = 1,2,3

a

b

I rms(a − b) is the RMS deviation between a and b
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Triangle inequality

I triangle with vertices at positions a,b,c

I edge lengths are ‖a − b‖, ‖b − c‖, ‖a − c‖
I by triangle inequality

‖a − c‖ = ‖(a − b) + (b − c)‖ ≤ ‖a − b‖ + ‖b − c‖

i.e., third edge length is no longer than sum of other two

‖a − b‖

‖b − c‖
‖a − c‖

a b

c
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Feature distance and nearest neighbors

I if x and y are feature vectors for two entities, ‖x − y‖ is the feature distance

I if z1, . . . ,zm is a list of vectors, zj is the nearest neighbor of x if

‖x − zj‖ ≤ ‖x − zi‖, i = 1, . . . ,m

z1

z2

z3

z4

z5

z6x

I these simple ideas are very widely used
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Document dissimilarity

I 5 Wikipedia articles: ‘Veterans Day’, ‘Memorial Day’, ‘Academy Awards’,
‘Golden Globe Awards’, ‘Super Bowl’

I word count histograms, dictionary of 4423 words

I pairwise distances shown below

Veterans Memorial Academy Golden Globe Super Bowl
Day Day Awards Awards

Veterans Day 0 0.095 0.130 0.153 0.170
Memorial Day 0.095 0 0.122 0.147 0.164
Academy A. 0.130 0.122 0 0.108 0.164
Golden Globe A. 0.153 0.147 0.108 0 0.181
Super Bowl 0.170 0.164 0.164 0.181 0
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Standard deviation

I for n-vector x, avg(x) = 1Tx/n

I de-meaned vector is x̃ = x − avg(x)1 (so avg(x̃) = 0)

I standard deviation of x is

std(x) = rms(x̃) =
‖x − (1Tx/n)1‖√

n

I std(x) gives ‘typical’ amount xi vary from avg(x)

I std(x) = 0 only if x = α1 for some α

I greek letters µ, σ commonly used for mean, standard deviation

I a basic formula:
rms(x)2 = avg(x)2 + std(x)2
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Mean return and risk

I x is time series of returns (say, in %) on some investment or asset over
some period

I avg(x) is the mean return over the period, usually just called return

I std(x) measures how variable the return is over the period, and is called
the risk

I multiple investments (with different return time series) are often compared
in terms of return and risk

I often plotted on a risk-return plot
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Risk-return example
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Chebyshev inequality for standard deviation

I x is an n-vector with mean avg(x), standard deviation std(x)

I rough idea: most entries of x are not too far from the mean

I by Chebyshev inequality, fraction of entries of x with

|xi − avg(x) | ≥ α std(x)

is no more than 1/α2 (for α > 1)

I for return time series with mean 8% and standard deviation 3%, loss
(xi ≤ 0) can occur in no more than (3/8)2 = 14.1% of periods
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Cauchy–Schwarz inequality

I for two n-vectors a and b, |aTb| ≤ ‖a‖‖b‖
I written out,

|a1b1 + · · · + anbn | ≤
(
a2

1 + · · · + a2
n

)1/2 (
b2

1 + · · · + b2
n

)1/2

I now we can show triangle inequality:

‖a + b‖2 = ‖a‖2 + 2aTb + ‖b‖2
≤ ‖a‖2 + 2‖a‖‖b‖ + ‖b‖2
= (‖a‖ + ‖b‖)2

Introduction to Applied Linear Algebra Boyd & Vandenberghe 3.18



Derivation of Cauchy–Schwarz inequality

I it’s clearly true if either a or b is 0

I so assume α = ‖a‖ and β = ‖b‖ are nonzero

I we have

0 ≤ ‖ βa − αb‖2
= ‖ βa‖2 − 2(βa)T (αb) + ‖αb‖2
= β2‖a‖2 − 2βα(aTb) + α2‖b‖2
= 2‖a‖2‖b‖2 − 2‖a‖ ‖b‖(aTb)

I divide by 2‖a‖ ‖b‖ to get aTb ≤ ‖a‖ ‖b‖
I apply to −a, b to get other half of Cauchy–Schwarz inequality
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Angle

I angle between two nonzero vectors a, b defined as

∠(a,b) = arccos
(

aTb
‖a‖ ‖b‖

)
I ∠(a,b) is the number in [0, π] that satisfies

aTb = ‖a‖ ‖b‖ cos (∠(a,b))

I coincides with ordinary angle between vectors in 2-D and 3-D
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Classification of angles

θ = ∠(a,b)

I θ = π/2 = 90◦: a and b are orthogonal, written a ⊥ b (aTb = 0)

I θ = 0: a and b are aligned (aTb = ‖a‖‖b‖)
I θ = π = 180◦: a and b are anti-aligned (aTb = −‖a‖ ‖b‖)
I θ ≤ π/2 = 90◦: a and b make an acute angle (aTb ≥ 0)

I θ ≥ π/2 = 90◦: a and b make an obtuse angle (aTb ≤ 0)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 3.21



Spherical distance

if a, b are on sphere of radius R, distance along the sphere is R∠(a,b)

a

b
0
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Document dissimilarity by angles

I measure dissimilarity by angle of word count histogram vectors

I pairwise angles (in degrees) for 5 Wikipedia pages shown below

Veterans Memorial Academy Golden Globe Super Bowl
Day Day Awards Awards

Veterans Day 0 60.6 85.7 87.0 87.7
Memorial Day 60.6 0 85.6 87.5 87.5
Academy A. 85.7 85.6 0 58.7 85.7
Golden Globe A. 87.0 87.5 58.7 0 86.0
Super Bowl 87.7 87.5 86.1 86.0 0
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Correlation coefficient

I vectors a and b, and de-meaned vectors

ã = a − avg(a)1, b̃ = b − avg(b)1

I correlation coefficient (between a and b, with ã , 0, b̃ , 0)

ρ =
ãT b̃
‖ã‖ ‖b̃‖

I ρ = cos ∠(ã, b̃)
– ρ = 0: a and b are uncorrelated
– ρ > 0.8 (or so): a and b are highly correlated
– ρ < −0.8 (or so): a and b are highly anti-correlated

I very roughly: highly correlated means ai and bi are typically both above
(below) their means together
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Examples

I highly correlated vectors:
– rainfall time series at nearby locations
– daily returns of similar companies in same industry
– word count vectors of closely related documents

(e.g., same author, topic, . . . )
– sales of shoes and socks (at different locations or periods)

I approximately uncorrelated vectors
– unrelated vectors
– audio signals (even different tracks in multi-track recording)

I (somewhat) negatively correlated vectors
– daily temperatures in Palo Alto and Melbourne
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Clustering

I given N n-vectors x1, . . . ,xN

I goal: partition (divide, cluster) into k groups

I want vectors in the same group to be close to one another
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Example settings

I topic discovery and document classification
– xi is word count histogram for document i

I patient clustering
– xi are patient attributes, test results, symptoms

I customer market segmentation
– xi is purchase history and other attributes of customer i

I color compression of images
– xi are RGB pixel values

I financial sectors
– xi are n-vectors of financial attributes of company i
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Clustering objective

I Gj ⊂ {1, . . . ,N} is group j, for j = 1, . . . ,k

I ci is group that xi is in: xi ∈ Gci

I group representatives: n-vectors z1, . . . ,zk

I clustering objective is

Jclust =
1
N

N∑
i=1

‖xi − zci ‖2

mean square distance from vectors to associated representative

I Jclust small means good clustering

I goal: choose clustering ci and representatives zj to minimize Jclust
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Partitioning the vectors given the representatives

I suppose representatives z1, . . . ,zk are given

I how do we assign the vectors to groups, i.e., choose c1, . . . ,cN?

I ci only appears in term ‖xi − zci ‖2 in Jclust

I to minimize over ci, choose ci so ‖xi − zci ‖2 = minj ‖xi − zj‖2

I i.e., assign each vector to its nearest representative
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Choosing representatives given the partition

I given the partition G1, . . . ,Gk, how do we choose representatives
z1, . . . ,zk to minimize Jclust?

I Jclust splits into a sum of k sums, one for each zj:

Jclust = J1 + · · · + Jk, Jj = (1/N)
∑
i∈Gj

‖xi − zj‖2

I so we choose zj to minimize mean square distance to the points in its
partition

I this is the mean (or average or centroid) of the points in the partition:

zj = (1/|Gj |)
∑
i∈Gj

xi
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k-means algorithm

I alternate between updating the partition, then the representatives

I a famous algorithm called k-means

I objective Jclust decreases in each step

given x1, . . . ,xN ∈ Rn and z1, . . . ,zk ∈ Rn

repeat
Update partition: assign i to Gj, j = argminj′ ‖xi − zj′ ‖2
Update centroids: zj =

1
|Pj |

∑
i∈Pj xi

until z1, . . . ,zk stop changing
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Convergence of k-means algorithm

I Jclust goes down in each step, until the zj’s stop changing

I but (in general) the k-means algorithm does not find the partition that
minimizes Jclust

I k-means is a heuristic: it is not guaranteed to find the smallest possible
value of Jclust

I the final partition (and its value of Jclust) can depend on the initial
representatives

I common approach:
– run k-means 10 times, with different (often random) initial representatives
– take as final partition the one with the smallest value of Jclust
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Data
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Iteration 1
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Iteration 2
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Iteration 3
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Iteration 10
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Final clustering
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Convergence
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Handwritten digit image set

I MNIST images of handwritten digits (via Yann Lecun)
I N = 60,000 28 × 28 images, represented as 784-vectors xi

I 25 examples shown below
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k-means image clustering

I k = 20, run 20 times with different initial assignments

I convergence shown below (including best and worst)
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Group representatives, best clustering
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Topic discovery

I N = 500 Wikipedia articles, word count histograms with n = 4423

I k = 9, run 20 times with different initial assignments
I convergence shown below (including best and worst)
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Topics discovered (clusters 1–3)

I words with largest representative coefficients

Cluster 1 Cluster 2 Cluster 3

Word Coef. Word Coef. Word Coef.

fight 0.038 holiday 0.012 united 0.004
win 0.022 celebrate 0.009 family 0.003
event 0.019 festival 0.007 party 0.003

champion 0.015 celebration 0.007 president 0.003
fighter 0.015 calendar 0.006 government 0.003

I titles of articles closest to cluster representative
1. “Floyd Mayweather, Jr”, “Kimbo Slice”, “Ronda Rousey”, “José Aldo”, “Joe Frazier”,

“Wladimir Klitschko”, “Saul Álvarez”, “Gennady Golovkin”, “Nate Diaz”, . . .

2. “Halloween”, “Guy Fawkes Night” “Diwali”, “Hanukkah”, “Groundhog Day”, “Rosh
Hashanah”, “Yom Kippur”, “Seventh-day Adventist Church”, “Remembrance Day”, . . .

3. “Mahatma Gandhi”, “Sigmund Freud”, “Carly Fiorina”, “Frederick Douglass”, “Marco
Rubio”, “Christopher Columbus”, “Fidel Castro”, “Jim Webb”, . . .
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Topics discovered (clusters 4–6)

I words with largest representative coefficients

Cluster 4 Cluster 5 Cluster 6

Word Coef. Word Coef. Word Coef.

album 0.031 game 0.023 series 0.029
release 0.016 season 0.020 season 0.027
song 0.015 team 0.018 episode 0.013
music 0.014 win 0.017 character 0.011
single 0.011 player 0.014 film 0.008

I titles of articles closest to cluster representative
1. “David Bowie”, “Kanye West” “Celine Dion”, “Kesha”, “Ariana Grande”, “Adele”, “Gwen

Stefani”, “Anti (album)”, “Dolly Parton”, “Sia Furler”, . . .

2. “Kobe Bryant”, “Lamar Odom”, “Johan Cruyff”, “Yogi Berra”, “José Mourinho”, “Halo 5:
Guardians”, “Tom Brady”, “Eli Manning”, “Stephen Curry”, “Carolina Panthers”, . . .

3. “The X-Files”, “Game of Thrones”, “House of Cards (U.S. TV series)”, “Daredevil (TV
series)”, “Supergirl (U.S. TV series)”, “American Horror Story”, . . .
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Topics discovered (clusters 7–9)

I words with largest representative coefficients

Cluster 7 Cluster 8 Cluster 9

Word Coef. Word Coef. Word Coef.

match 0.065 film 0.036 film 0.061
win 0.018 star 0.014 million 0.019

championship 0.016 role 0.014 release 0.013
team 0.015 play 0.010 star 0.010
event 0.015 series 0.009 character 0.006

I titles of articles closest to cluster representative
1. “Wrestlemania 32”, “Payback (2016)”, “Survivor Series (2015)”, “Royal Rumble (2016)”,

“Night of Champions (2015)”, “Fastlane (2016)”, “Extreme Rules (2016)”, . . .

2. “Ben Affleck”, “Johnny Depp”, “Maureen O’Hara”, “Kate Beckinsale”, “Leonardo
DiCaprio”, “Keanu Reeves”, “Charlie Sheen”, “Kate Winslet”, “Carrie Fisher”, . . .

3. “Star Wars: The Force Awakens”, “Star Wars Episode I: The Phantom Menace”, “The
Martian (film)”, “The Revenant (2015 film)”, “The Hateful Eight”, . . .
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Linear dependence

I set of n-vectors {a1, . . . ,ak} (with k ≥ 1) is linearly dependent if

β1a1 + · · · + βkak = 0

holds for some β1, . . . , βk, that are not all zero

I equivalent to: at least one ai is a linear combination of the others

I we say ‘a1, . . . ,ak are linearly dependent’

I {a1} is linearly dependent only if a1 = 0

I {a1,a2} is linearly dependent only if one ai is a multiple of the other

I for more than two vectors, there is no simple to state condition
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Example

I the vectors

a1 =



0.2
−7
8.6


, a2 =



−0.1
2
−1


, a3 =



0
−1
2.2



are linearly dependent, since a1 + 2a2 − 3a3 = 0

I can express any of them as linear combination of the other two, e.g.,

a2 = (−1/2)a1 + (3/2)a3

Introduction to Applied Linear Algebra Boyd & Vandenberghe 5.3



Linear independence

I set of n-vectors {a1, . . . ,ak} (with k ≥ 1) is linearly independent if it is not
linearly dependent, i.e.,

β1a1 + · · · + βkak = 0

holds only when β1 = · · · = βk = 0

I we say ‘a1, . . . ,ak are linearly independent’

I equivalent to: no ai is a linear combination of the others

I example: the unit n-vectors e1, . . . ,en are linearly independent
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Linear combinations of linearly independent vectors

I suppose x is linear combination of linearly independent vectors a1, . . . ,ak:

x = β1a1 + · · · + βkak

I the coefficients β1, . . . , βk are unique, i.e., if

x = γ1a1 + · · · + γkak

then βi = γi for i = 1, . . . ,k

I this means that (in principle) we can deduce the coefficients from x

I to see why, note that

(β1 − γ1)a1 + · · · + (βk − γk)ak = 0

and so (by linear independence) β1 − γ1 = · · · = βk − γk = 0
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Independence-dimension inequality

I a linearly independent set of n-vectors can have at most n elements

I put another way: any set of n + 1 or more n-vectors is linearly dependent
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Basis

I a set of n linearly independent n-vectors a1, . . . ,an is called a basis

I any n-vector b can be expressed as a linear combination of them:

b = β1a1 + · · · + βnan

for some β1, . . . , βn

I and these coefficients are unique

I formula above is called expansion of b in the a1, . . . ,an basis

I example: e1, . . . ,en is a basis, expansion of b is

b = b1e1 + · · · + bnen
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Orthonormal vectors

I set of n-vectors a1, . . . ,ak are (mutually) orthogonal if ai ⊥ aj for i , j

I they are normalized if ‖ai‖ = 1 for i = 1, . . . ,k

I they are orthonormal if both hold

I can be expressed using inner products as

aT
i aj =

{
1 i = j
0 i , j

I orthonormal sets of vectors are linearly independent

I by independence-dimension inequality, must have k ≤ n

I when k = n, a1, . . . ,an are an orthonormal basis
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Examples of orthonormal bases

I standard unit n-vectors e1, . . . ,en

I the 3-vectors



0
0
−1


,

1√
2



1
1
0


,

1√
2



1
−1

0


I the 2-vectors shown below
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Orthonormal expansion

I if a1, . . . ,an is an orthonormal basis, we have for any n-vector x

x = (aT
1 x)a1 + · · · + (aT

n x)an

I called orthonormal expansion of x (in the orthonormal basis)

I to verify formula, take inner product of both sides with ai
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Gram–Schmidt (orthogonalization) algorithm

I an algorithm to check if a1, . . . ,ak are linearly independent

I we’ll see later it has many other uses
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Gram–Schmidt algorithm

given n-vectors a1, . . . ,ak

for i = 1, . . . ,k
1. Orthogonalization: q̃i = ai − (qT

1 ai)q1 − · · · − (qT
i−1ai)qi−1

2. Test for linear dependence: if q̃i = 0, quit
3. Normalization: qi = q̃i/‖q̃i‖

I if G–S does not stop early (in step 2), a1, . . . ,ak are linearly independent

I if G–S stops early in iteration i = j, then aj is a linear combination of
a1, . . . ,aj−1 (so a1, . . . ,ak are linearly dependent)
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Example

a1
a2

q̃1
a2

q1 a2

q1 a2 −(qT
1 a2)q1

q̃2

q1

q2
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Analysis

let’s show by induction that q1, . . . ,qi are orthonormal

I assume it’s true for i − 1

I orthogonalization step ensures that

q̃i ⊥ q1, . . . , q̃i ⊥ qi−1

I to see this, take inner product of both sides with qj, j < i

qT
j q̃i = qT

j ai − (qT
1 ai)(qT

j q1) − · · · − (qT
i−1ai)(qT

j qi−1)

= qT
j ai − qT

j ai = 0

I so qi ⊥ q1, . . . ,qi ⊥ qi−1

I normalization step ensures that ‖qi‖ = 1
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Analysis

assuming G–S has not terminated before iteration i

I ai is a linear combination of q1, . . . ,qi:

ai = ‖q̃i‖qi + (qT
1 ai)q1 + · · · + (qT

i−1ai)qi−1

I qi is a linear combination of a1, . . . ,ai: by induction on i,

qi = (1/‖q̃i‖)
(
ai − (qT

1 ai)q1 − · · · − (qT
i−1ai)qi−1

)
and (by induction assumption) each q1, . . . ,qi−1 is a linear combination of
a1, . . . ,ai−1
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Early termination

suppose G–S terminates in step j

I aj is linear combination of q1, . . . ,qj−1

aj = (qT
1 aj)q1 + · · · + (qT

j−1aj)qj−1

I and each of q1, . . . ,qj−1 is linear combination of a1, . . . ,aj−1

I so aj is a linear combination of a1, . . . ,aj−1
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Complexity of Gram–Schmidt algorithm

I step 1 of iteration i requires i − 1 inner products,

qT
1 ai, . . . ,qT

i−1ai

which costs (i − 1)(2n − 1) flops

I n(i − 1) flops to compute q̃i

I 3n flops to compute ‖q̃i‖ and qi

I total is

k∑
i=1

((4n − 1)(i − 1) + 3n) = (4n − 1)
k(k − 1)

2
+ 3nk ≈ 2nk2

using
∑k

i=1(i − 1) = k(k − 1)/2
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Matrices

I a matrix is a rectangular array of numbers, e.g.,



0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.7


I its size is given by (row dimension) × (column dimension)

e.g., matrix above is 3 × 4

I elements also called entries or coefficients

I Bij is i, j element of matrix B

I i is the row index, j is the column index; indexes start at 1

I two matrices are equal (denoted with =) if they are the same size and
corresponding entries are equal
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Matrix shapes

an m × n matrix A is

I tall if m > n

I wide if m < n

I square if m = n
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Column and row vectors

I we consider an n × 1 matrix to be an n-vector

I we consider a 1 × 1 matrix to be a number

I a 1 × n matrix is called a row vector, e.g.,
[

1.2 −0.3 1.4 2.6
]

which is not the same as the (column) vector



1.2
−0.3

1.4
2.6
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Columns and rows of a matrix

I suppose A is an m × n matrix with entries Aij for i = 1, . . . ,m, j = 1, . . . ,n
I its jth column is (the m-vector)



A1j
...

Amj


I its ith row is (the n-row-vector)

[
Ai1 · · · Ain

]

I slice of matrix: Ap:q,r:s is the (q − p + 1) × (s − r + 1) matrix

Ap:q,r:s =



Apr Ap,r+1 · · · Aps
Ap+1,r Ap+1,r+1 · · · Ap+1,s
...

...
...

Aqr Aq,r+1 · · · Aqs
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Block matrices

I we can form block matrices, whose entries are matrices, such as

A =
[

B C
D E

]

where B, C, D, and E are matrices (called submatrices or blocks of A)
I matrices in each block row must have same height (row dimension)
I matrices in each block column must have same width (column dimension)
I example: if

B =
[

0 2 3
]
, C =

[
−1

]
, D =

[
2 2 1
1 3 5

]
, E =

[
4
4

]

then
[

B C
D E

]
=



0 2 3 −1
2 2 1 4
1 3 5 4
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Column and row representation of matrix

I A is an m × n matrix

I can express as block matrix with its (m-vector) columns a1, . . . ,an

A =
[

a1 a2 · · · an
]

I or as block matrix with its (n-row-vector) rows b1, . . . ,bm

A =



b1
b2
...

bm
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Examples

I image: Xij is i, j pixel value in a monochrome image

I rainfall data: Aij is rainfall at location i on day j

I multiple asset returns: Rij is return of asset j in period i

I contingency table: Aij is number of objects with first attribute i and second
attribute j

I feature matrix: Xij is value of feature i for entity j

in each of these, what do the rows and columns mean?
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Graph or relation

I a relation is a set of pairs of objects, labeled 1, . . . ,n, such as

R = {(1,2), (1,3), (2,1), (2,4), (3,4), (4,1)}
I same as directed graph

1

2 3

4

I can be represented as n × n matrix with Aij = 1 if (i, j) ∈ R

A =



0 1 1 0
1 0 0 1
0 0 0 1
1 0 0 0
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Special matrices

I m × n zero matrix has all entries zero, written as 0m×n or just 0

I identity matrix is square matrix with Iii = 1 and Iij = 0 for i , j, e.g.,

[
1 0
0 1

]
,



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



I sparse matrix: most entries are zero
– examples: 0 and I
– can be stored and manipulated efficiently
– nnz(A) is number of nonzero entries
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Diagonal and triangular matrices

I diagonal matrix: square matrix with Aij = 0 when i , j

I diag(a1, . . . ,an) denotes the diagonal matrix with Aii = ai for i = 1, . . . ,n

I example:

diag(0.2,−3,1.2) =


0.2 0 0
0 −3 0
0 0 1.2


I lower triangular matrix: Aij = 0 for i < j

I upper triangular matrix: Aij = 0 for i > j

I examples:



1 −1 0.7
0 1.2 −1.1
0 0 3.2


(upper triangular),

[ −0.6 0
−0.3 3.5

]
(lower triangular)
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Transpose

I the transpose of an m × n matrix A is denoted AT , and defined by

(AT )ij = Aji, i = 1, . . . ,n, j = 1, . . . ,m

I for example,


0 4
7 0
3 1



T

=

[
0 7 3
4 0 1

]

I transpose converts column to row vectors (and vice versa)

I (AT )T = A
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Addition, subtraction, and scalar multiplication

I (just like vectors) we can add or subtract matrices of the same size:

(A + B)ij = Aij + Bij, i = 1, . . . ,m, j = 1, . . . ,n

(subtraction is similar)

I scalar multiplication:

(αA)ij = αAij, i = 1, . . . ,m, j = 1, . . . ,n

I many obvious properties, e.g.,

A + B = B + A, α(A + B) = αA + αB, (A + B)T = AT + BT
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Matrix norm

I for m × n matrix A, we define

‖A‖ = *.
,

m∑
i=1

n∑
j=1

A2
ij

+/
-

1/2

I agrees with vector norm when n = 1

I satisfies norm properties:

‖αA‖ = |α |‖A‖
‖A + B‖ ≤ ‖A‖ + ‖B‖
‖A‖ ≥ 0

‖A‖ = 0 only if A = 0

I distance between two matrices: ‖A − B‖
I (there are other matrix norms, which we won’t use)
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Matrix-vector product

I matrix-vector product of m × n matrix A, n-vector x, denoted y = Ax, with

yi = Ai1x1 + · · · + Ainxn, i = 1, . . . ,m

I for example,
[

0 2 −1
−2 1 1

] 

2
1
−1


=

[
3
−4

]
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Row interpretation

I y = Ax can be expressed as

yi = bT
i x, i = 1, . . . ,m

where bT
1 , . . . ,b

T
m are rows of A

I so y = Ax is a ‘batch’ inner product of all rows of A with x

I example: A1 is vector of row sums of matrix A
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Column interpretation

I y = Ax can be expressed as

y = x1a1 + x2a2 + · · · + xnan

where a1, . . . ,an are columns of A

I so y = Ax is linear combination of columns of A, with coefficients x1, . . . ,xn

I important example: Aej = aj

I columns of A are linearly independent if Ax = 0 implies x = 0
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General examples

I 0x = 0, i.e., multiplying by zero matrix gives zero

I Ix = x, i.e., multiplying by identity matrix does nothing

I inner product aTb is matrix-vector product of 1 × n matrix aT and n-vector b

I x̃ = Ax is de-meaned version of x, with

A =



1 − 1/n −1/n · · · −1/n
−1/n 1 − 1/n · · · −1/n
...

. . .
...

−1/n −1/n · · · 1 − 1/n
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Difference matrix

I (n − 1) × n difference matrix is

D =



−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0

. . .
. . .

. . .
. . .

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


y = Dx is (n − 1)-vector of differences of consecutive entries of x:

Dx =



x2 − x1
x3 − x2

...
xn − xn−1


I Dirichlet energy: ‖Dx‖2 is measure of wiggliness for x a time series
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Return matrix – portfolio vector

I R is T × n matrix of asset returns

I Rij is return of asset j in period i (say, in percentage)

I n-vector w gives portfolio (investments in the assets)

I T-vector Rw is time series of the portfolio return

I avg(Rw) is the portfolio (mean) return, std(Rw) is its risk
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Feature matrix – weight vector

I X = [x1 · · · xN] is n × N feature matrix

I column xj is feature n-vector for object or example j

I Xij is value of feature i for example j

I n-vector w is weight vector

I s = XTw is vector of scores for each example; sj = xT
j w
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Input – output matrix

I A is m × n matrix

I y = Ax

I n-vector x is input or action

I m-vector y is output or result

I Aij is the factor by which yi depends on xj

I Aij is the gain from input j to output i

I e.g., if A is lower triangular, then yi only depends on x1, . . . ,xi
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Complexity

I m × n matrix stored A as m × n array of numbers
(for sparse A, store only nnz(A) nonzero values)

I matrix addition, scalar-matrix multiplication cost mn flops

I matrix-vector multiplication costs m(2n − 1) ≈ 2mn flops
(for sparse A, around 2nnz(A) flops)
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Geometric transformations

I many geometric transformations and mappings of 2-D and 3-D vectors can
be represented via matrix multiplication y = Ax

I for example, rotation by θ:

y =
[

cos θ − sin θ
sin θ cos θ

]
x x

Ax

θ

(to get the entries, look at Ae1 and Ae2)
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Selectors

I an m × n selector matrix: each row is a unit vector (transposed)

A =



eT
k1
...

eT
km


I multiplying by A selects entries of x:

Ax = (xk1 ,xk2 , . . . ,xkm )

I example: the m × 2m matrix

A =



1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 0


‘down-samples’ by 2: if x is a 2m-vector then y = Ax = (x1,x3, . . . ,x2m−1)

I other examples: image cropping, permutation, . . .
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Incidence matrix

I graph with n vertices or nodes, m (directed) edges or links
I incidence matrix is n × m matrix

Aij =




1 edge j points to node i
−1 edge j points from node i

0 otherwise

I example with n = 4, m = 5:

1

2 3

4

1 54

2

3

A =



−1 −1 0 1 0
1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1
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Flow conservation

I m-vector x gives flows (of something) along the edges

I examples: heat, money, power, mass, people, . . .

I xj > 0 means flow follows edge direction

I Ax is n-vector that gives the total or net flows

I (Ax)i is the net flow into node i

I Ax = 0 is flow conservation; x is called a circulation
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Potentials and Dirichlet energy

I suppose v is an n-vector, called a potential

I vi is potential value at node i

I u = ATv is an m-vector of potential differences across the m edges

I uj = vl − vk, where edge j goes from k to node l

I Dirichlet energy is D (v) = ‖ATv‖2,

D (v) =
∑

edges (k,l)

(vl − vk)2

(sum of squares of potential differences across the edges)

I D (v) is small when potential values of neighboring nodes are similar
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Convolution

I for n-vector a, m-vector b, the convolution c = a ∗ b is the (n+m− 1)-vector

ck =
∑

i+j=k+1

aibj, k = 1, . . . ,n + m − 1

I for example with n = 4, m = 3, we have

c1 = a1b1

c2 = a1b2 + a2b1

c3 = a1b3 + a2b2 + a3b1

c4 = a2b3 + a3b2 + a4b1

c5 = a3b3 + a4b2

c6 = a4b3

I example: (1,0,−1) ∗ (2,1,−1) = (2,1,−3,−1,1)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 7.10



Polynomial multiplication

I a and b are coefficients of two polynomials:

p(x) = a1 + a2x + · · · + anxn−1, q(x) = b1 + b2x + · · · + bmxm−1

I convolution c = a ∗ b gives the coefficients of the product p(x)q(x):

p(x)q(x) = c1 + c2x + · · · + cn+m−1xn+m−2

I this gives simple proofs of many properties of convolution; for example,

a ∗ b = b ∗ a

(a ∗ b) ∗ c = a ∗ (b ∗ c)

a ∗ b = 0 only if a = 0 or b = 0
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Toeplitz matrices

I function f (b) = a ∗ b is linear; in fact c = T (b)a with

T (b) =



b1 0 0 0
b2 b1 0 0
b3 b2 b1 0
0 b3 b2 b1
0 0 b3 b2
0 0 0 b3



I T (b) is a Toeplitz matrix (values on diagonals are equal)
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Moving average of time series

I n-vector x represents a time series

I convolution y = a ∗ x with a = (1/3,1/3,1/3) is 3-period moving average:

yk =
1
3

(xk + xk−1 + xk−2), k = 1,2, . . . ,n + 2

(with xk interpreted as zero for k < 1 and k > n)
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∗x

) k
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Input-output convolution system

I m-vector u represents a time series input

I m + n − 1 vector y represents a time series output

I y = h ∗ u is a convolution model

I n-vector h is called the system impulse response

I we have

yi =

n∑
j=1

ui−j+1hj

(interpreting uk as zero for k < n or k > n)

I interpretation: yi, output at time i is a linear combination of ui, . . . ,ui−n+1

I h3 is the factor by which current output depends on what the input was 2
time steps before
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Superposition

I f : Rn → Rm means f is a function that maps n-vectors to m-vectors

I we write f (x) = (f1(x), . . . , fm(x)) to emphasize components of f (x)

I we write f (x) = f (x1, . . . ,xn) to emphasize components of x

I f satisfies superposition if for all x, y, α, β

f (αx + βy) = αf (x) + βf (y)

(this innocent looking equation says a lot . . . )

I such an f is called linear
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Matrix-vector product function

I with A an m × n matrix, define f as f (x) = Ax

I f is linear:

f (αx + βy) = A(αx + βy)
= A(αx) + A(βy)
= α(Ax) + β(Ay)
= αf (x) + βf (y)

I converse is true: if f : Rn → Rm is linear, then

f (x) = f (x1e1 + x2e2 + · · · + xnen)
= x1f (e1) + x2f (e2) + · · · + xnf (en)
= Ax

with A =
[

f (e1) f (e2) · · · f (en)
]
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Examples

I reversal: f (x) = (xn,xn−1, . . . ,x1)

A =



0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


I running sum: f (x) = (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · · + xn)

A =



1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1
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Affine functions

I function f : Rn → Rm is affine if it is a linear function plus a constant, i.e.,

f (x) = Ax + b

I same as:
f (αx + βy) = αf (x) + βf (y)

holds for all x, y, and α, β with α + β = 1

I can recover A and b from f using

A =
[

f (e1) − f (0) f (e2) − f (0) · · · f (en) − f (0)
]

b = f (0)

I affine functions sometimes (incorrectly) called linear
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Linear and affine functions models

I in many applications, relations between n-vectors and m vectors are
approximated as linear or affine

I sometimes the approximation is excellent, and holds over large ranges of
the variables (e.g., electromagnetics)

I sometimes the approximation is reasonably good over smaller ranges
(e.g., aircraft dynamics)

I in other cases it is quite approximate, but still useful (e.g., econometric
models)
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Price elasticity of demand

I n goods or services

I prices given by n-vector p, demand given as n-vector d

I δ
price
i = (pnew

i − pi)/pi is fractional changes in prices

I δdem
i = (dnew

i − di)/di is fractional change in demands

I price-demand elasticity model: δdem = Eδprice

I what do the following mean?

E11 = −0.3, E12 = +0.1, E23 = −0.05
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Taylor series approximation

I suppose f : Rn → Rm is differentiable
I first order Taylor approximation f̂ of f near z:

f̂i(x) = fi(z) +
∂fi
∂x1

(z)(x1 − z1) + · · · + ∂fi
∂xn

(z)(xn − zn)

= fi(z) + ∇fi(z)T (x − z)

I in compact notation: f̂ (x) = f (z) + Df (z)(x − z)

I Df (x) is the m × n derivative or Jacobian matrix of f at z

Df (z)ij =
∂fi
∂xj

(z), i = 1, . . . ,m, j = 1, . . . ,n

I f̂ (x) is a very good approximation of f (x) for x near z

I f̂ (x) is an affine function of x
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Regression model

I regression model: ŷ = xT β + v
– x is n-vector of features or regressors
– β is n-vector of model parameters; v is offset parameter
– (scalar) ŷ is our prediction of y

I now suppose we have N examples or samples x(1) , . . . ,x(N) , and
associated responses y(1) , . . . ,y(N)

I associated predictions are ŷ(i) = (x(i))T β + v

I write as ŷd = XT β + v1
– X is feature matrix with columns x(1) , . . . ,x(N)

– yd is N-vector of responses (y(1) , . . . ,y(N) )
– ŷd is N-vector of predictions (ŷ(1) , . . . , ŷ(N) )

I prediction error (vector) is yd − ŷd = yd − XT β − v1
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Systems of linear equations

I set (or system) of m linear equations in n variables x1, . . . , xn:

A11x1 + A12x2 + · · · + A1nxn = b1

A21x1 + A22x2 + · · · + A2nxn = b2

...

Am1x1 + Am2x2 + · · · + Amnxn = bm

I n-vector x is called the variable or unknowns

I Aij are the coefficients; A is the coefficient matrix

I b is called the right-hand side

I can express very compactly as Ax = b
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Systems of linear equations

I systems of linear equations classified as
– under-determined if m < n (A wide)
– square if m = n (A square)
– over-determined if m > n (A tall)

I x is called a solution if Ax = b

I depending on A and b, there can be
– no solution
– one solution
– many solutions

I we’ll see how to solve linear equations later
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Chemical equations

I a chemical reaction involves p reactants, q products (molecules)

I expressed as

a1R1 + · · · + apRp −→ b1P1 + · · · + bqPq

I R1, . . . ,Rp are reactants

I P1, . . . ,Pq are products

I a1, . . . ,ap,b1, . . . ,bq are positive coefficients

I coefficients usually integers, but can be scaled
– e.g., multiplying all coefficients by 1/2 doesn’t change the reaction
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Example: electrolysis of water

2H2O −→ 2H2 + O2

I one reactant: water (H2O)

I two products: hydrogen (H2) and oxygen (O2)

I reaction consumes 2 water molecules and produces 2 hydrogen molecules
and 1 oxygen molecule
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Balancing equations

I each molecule (reactant/product) contains specific numbers of (types of)
atoms, given in its formula

– e.g., H2O contains two H and one O

I conservation of mass: total number of each type of atom in a chemical
equation must balance

I for each atom, total number on LHS must equal total on RHS

I e.g., electrolysis reaction is balanced:
– 4 units of H on LHS and RHS
– 2 units of O on LHS and RHS

I finding (nonzero) coefficients to achieve balance is called balancing
equations
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Reactant and product matrices

I consider reaction with m types of atoms, p reactants, q products

I m × p reactant matrix R is defined by

Rij = number of atoms of type i in reactant Rj,

for i = 1, . . . ,m and j = 1, . . . ,p

I with a = (a1, . . . ,ap) (vector of reactant coefficients)

Ra = (vector of) total numbers of atoms of each type in reactants

I define product m × q matrix P in similar way

I m-vector Pb is total numbers of atoms of each type in products

I conservation of mass is Ra = Pb
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Balancing equations via linear equations

I conservation of mass is

[
R −P

] [
a
b

]
= 0

I simple solution is a = b = 0

I to find a nonzero solution, set any coefficient (say, a1) to be 1

I balancing chemical equations can be expressed as solving a set of m + 1
linear equations in p + q variables

[
R −P
eT

1 0

] [
a
b

]
= em+1

(we ignore here that ai and bi should be nonnegative integers)
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Conservation of charge

I can extend to include charge, e.g., Cr2O2−
7 has charge −2

I conservation of charge: total charge on each side of reaction must balance

I we can simply treat charge as another type of atom to balance
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Example

a1Cr2O2−
7 + a2Fe2+ + a3H+ −→ b1Cr3+ + b2Fe3+ + b3H2O

I 5 atoms/charge: Cr, O, Fe, H, charge
I reactant and product matrix:

R =



2 0 0
7 0 0
0 1 0
0 0 1
−2 2 1



, P =



1 0 0
0 0 1
0 1 0
0 0 2
3 3 0


I balancing equations (including a1 = 1 constraint)



2 0 0 −1 0 0
7 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 0 −2
−2 2 1 −3 −3 0

1 0 0 0 0 0





a1
a2
a3
b1
b2
b3



=



0
0
0
0
0
1


Introduction to Applied Linear Algebra Boyd & Vandenberghe 8.21



Balancing equations example

I solving the system yields


a1
a2
a3
b1
b2
b3



=



1
6

14
2
6
7


I the balanced equation is

Cr2O2−
7 + 6Fe2+ + 14H+ −→ 2Cr3+ + 6Fe3+ + 7H2O
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State sequence

I sequence of n-vectors x1,x2, . . .

I t denotes time or period

I xt is called state at time t; sequence is called state trajectory

I assuming t is current time,
– xt is current state
– xt−1 is previous state
– xt+1 is next state

I examples: xt represents
– age distribution in a population
– economic output in n sectors
– mechanical variables
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Linear dynamics

I linear dynamical system:

xt+1 = Atxt, t = 1,2, . . .

I At are n × n dynamics matrices

I (At)ij(xt)j is contribution to (xt+1)i from (xt)j

I system is called time-invariant if At = A doesn’t depend on time

I can simulate evolution of xt using recursion xt+1 = Atxt
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Variations

I linear dynamical system with input

xt+1 = Atxt + Btut + ct, t = 1,2, . . .

– ut is an input m-vector
– Bt is n × m input matrix
– ct is offset

I K-Markov model:

xt+1 = A1xt + · · · + AKxt−K+1, t = K,K + 1, . . .

– next state depends on current state and K − 1 previous states
– also known as auto-regresssive model
– for K = 1, this is the standard linear dynamical system xt+1 = Axt
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Population distribution

I xt ∈ R100 gives population distribution in year t = 1, . . . ,T

I (xt)i is the number of people with age i − 1 in year t (say, on January 1)

I total population in year t is 1Txt

I number of people age 70 or older in year t is (070,130)Txt
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Population distribution of the U.S.

(from 2010 census)
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Birth and death rates

I birth rate b ∈ R100, death (or mortality) rate d ∈ R100

I bi is the number of births per person with age i − 1

I di is the portion of those aged i − 1 who will die this year
(we’ll take d100 = 1)

I b and d can vary with time, but we’ll assume they are constant
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Birth and death rates in the U.S.
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Dynamics

I let’s find next year’s population distribution xt+1 (ignoring immigration)

I number of 0-year-olds next year is total births this year:

(xt+1)1 = bTxt

I number of i-year-olds next year is number of (i − 1)-year-olds this year,
minus those who die:

(xt+1)i+1 = (1 − di)(xt)i, i = 1, . . . ,99

I xt+1 = Axt, where

A =



b1 b2 · · · b99 b100
1 − d1 0 · · · 0 0

0 1 − d2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 − d99 0
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Predicting future population distributions

predicting U.S. 2020 distribution from 2010 (ignoring immigration)
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SIR model

I 4-vector xt gives proportion of population in 4 infection states

Susceptible: can acquire the disease the next day
Infected: have the disease
Recovered: had the disease, recovered, now immune
Deceased: had the disease, and unfortunately died

I sometimes called SIR model

I e.g., xt = (0.75,0.10,0.10,0.05)
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Epidemic dynamics

over each day,
I among susceptible population,

– 5% acquires the disease
– 95% remain susceptible

I among infected population,
– 1% dies
– 10% recovers with immunity
– 4% recover without immunity (i.e., become susceptible)
– 85% remain infected

I 100% of immune and dead people remain in their state
I epidemic dynamics as linear dynamical system

xt+1 =



0.95 0.04 0 0
0.05 0.85 0 0

0 0.10 1 0
0 0.01 0 1



xt

Introduction to Applied Linear Algebra Boyd & Vandenberghe 9.14



Simulation from x1 = (1,0,0,0)
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Matrix multiplication

I can multiply m × p matrix A and p × n matrix B to get C = AB:

Cij =

p∑
k=1

AikBkj = Ai1B1j + · · · + AipBpj

for i = 1, . . . ,m, j = 1, . . . ,n

I to get Cij: move along ith row of A, jth column of B

I example:

[ −1.5 3 2
1 −1 0

] 

−1 −1
0 −2
1 0


=

[
3.5 −4.5
−1 1

]
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Special cases of matrix multiplication

I scalar-vector product (with scalar on right!) xα

I inner product aTb

I matrix-vector multiplication Ax

I outer product of m-vector a and n-vector b

abT =



a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
...

amb1 amb2 · · · ambn
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Properties

I (AB)C = A(BC), so both can be written ABC

I A(B + C) = AB + AC

I (AB)T = BTAT

I AI = A and IA = A

I AB = BA does not hold in general
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Block matrices

block matrices can be multiplied using the same formula, e.g.,
[

A B
C D

] [
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

(provided the products all make sense)
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Column interpretation

I denote columns of B by bi:

B =
[

b1 b2 · · · bn
]

I then we have

AB = A
[

b1 b2 · · · bn
]

=
[

Ab1 Ab2 · · · Abn
]

I so AB is ‘batch’ multiply of A times columns of B
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Multiple sets of linear equations

I given k systems of linear equations, with same m × n coefficient matrix

Axi = bi, i = 1, . . . ,k

I write in compact matrix form as AX = B
I X = [x1 · · · xk], B = [b1 · · · bk]
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Inner product interpretation

I with aT
i the rows of A, bj the columns of B, we have

AB =



aT
1 b1 aT

1 b2 · · · aT
1 bn

aT
2 b1 aT

2 b2 · · · aT
2 bn

...
...

...
aT

mb1 aT
mb2 · · · aT

mbn


I so matrix product is all inner products of rows of A and columns of B,

arranged in a matrix
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Gram matrix

I let A be an m × n matrix with columns a1, . . . ,an

I the Gram matrix of A is

G = ATA =



aT
1 a1 aT

1 a2 · · · aT
1 an

aT
2 a1 aT

2 a2 · · · aT
2 an

...
...

. . .
...

aT
n a1 aT

n a2 · · · aT
n an


I Gram matrix gives all inner products of columns of A

I example: G = ATA = I means columns of A are orthonormal
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Complexity

I to compute Cij = (AB)ij is inner product of p-vectors

I so total required flops is (mn)(2p) = 2mnp flops

I multiplying two 1000 × 1000 matrices requires 2 billion flops

I . . . and can be done in well under a second on current computers
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Composition of linear functions

I A is an m × p matrix, B is p × n

I define f : Rp → Rm and g : Rn → Rp as

f (u) = Au, g(v) = Bv

I f and g are linear functions

I composition of f and g is h : Rn → Rm with h(x) = f (g(x))

I we have
h(x) = f (g(x)) = A(Bx) = (AB)x

I composition of linear functions is linear

I associated matrix is product of matrices of the functions
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Second difference matrix

I Dn is (n − 1) × n difference matrix:

Dnx = (x2 − x1, . . . ,xn − xn−1)

I Dn−1 is (n − 2) × (n − 1) difference matrix:

Dny = (y2 − y1, . . . ,yn−1 − yn−2)

I ∆ = Dn−1Dn is (n − 2) × n second difference matrix:

∆x = (x1 − 2x2 + x3,x2 − 2x3 + x4, . . . ,xn−2 − 2xn−1 + xn)

I for n = 5, ∆ = Dn−1Dn is



1 −2 −1 0 0
0 1 −2 −1 0
0 0 1 −2 −1


=



−1 1 0 0
0 −1 1 0
0 0 −1 1





−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
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Matrix powers

I for A square, A2 means AA, and same for higher powers

I with convention A0 = I we have AkAl = Ak+l

I negative powers later; fractional powers in other courses
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Directed graph

I n × n matrix A is adjacency matrix of directed graph:

Aij =

{
1 there is a edge from vertex j to vertex i
0 otherwise

I example:

1

2 3

4

5
A =



0 1 0 0 1
1 0 1 0 0
0 0 1 1 1
1 0 0 0 0
0 0 0 1 0
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Paths in directed graph

I square of adjacency matrix:

(A2)ij =

n∑
k=1

AikAkj

I (A2)ij is number of paths of length 2 from j to i

I for the example,

A2 =



1 0 1 1 0
0 1 1 1 2
1 0 1 2 1
0 1 0 0 1
1 0 0 0 0


e.g., there are two paths from 4 to 3 (via 3 and 5)

I more generally, (A`)ij = number of paths of length ` from j
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Gram–Schmidt in matrix notation

I run Gram–Schmidt on columns a1, . . . ,ak of n × k matrix A

I if columns are linearly independent, get orthonormal q1, . . . ,qk

I define n × k matrix Q with columns q1, . . . ,qk

I QTQ = I

I from Gram–Schmidt algorithm

ai = (qT
1 ai)q1 + · · · + (qT

i−1ai)qi−1 + ‖q̃i‖qi

= R1iq1 + · · · + Riiqi

with Rij = qT
i aj for i < j and Rii = ‖q̃i‖

I defining Rij = 0 for i > j we have A = QR

I R is upper triangular, with positive diagonal entries
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QR factorization

I A = QR is called QR factorization of A

I factors satisfy QTQ = I, R upper triangular with positive diagonal entries

I can be computed using Gram–Schmidt algorithm (or some variations)

I has a huge number of uses, which we’ll see soon
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Left inverses

I a number x that satisfies xa = 1 is called the inverse of a

I inverse (i.e., 1/a) exists if and only if a , 0, and is unique

I a matrix X that satisfies XA = I is called a left inverse of A

I if a left inverse exists we say that A is left-invertible

I example: the matrix

A =


−3 −4
4 6
1 1


has two different left inverses:

B =
1
9

[ −11 −10 16
7 8 −11

]
, C =

1
2

[
0 −1 6
0 1 −4

]
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Left inverse and column independence

I if A has a left inverse C then the columns of A are linaerly independent

I to see this: if Ax = 0 and CA = I then

0 = C0 = C(Ax) = (CA)x = Ix = x

I we’ll see later the converse is also true, so
a matrix is left-invertible if and only if its columns are linearly independent

I matrix generalization of
a number is invertible if and only if it is nonzero

I so left-invertible matrices are tall or square
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Solving linear equations with a left inverse

I suppose Ax = b, and A has a left inverse C

I then Cb = C(Ax) = (CA)x = Ix = x

I so multiplying the right-hand side by a left inverse yields the solution
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Example

A =


−3 −4
4 6
1 1


, b =



1
−2
0



I over-determined equations Ax = b have (unique) solution x = (1,−1)
I A has two different left inverses,

B =
1
9

[ −11 −10 16
7 8 −11

]
, C =

1
2

[
0 −1 6
0 1 −4

]

I multiplying the right-hand side with the left inverse B we get

Bb =
[

1
−1

]

I and also
Cb =

[
1
−1

]
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Right inverses

I a matrix X that satisfies AX = I is a right inverse of A

I if a right inverse exists we say that A is right-invertible

I A is right-invertible if and only if AT is left-invertible:

AX = I ⇐⇒ (AX)T = I ⇐⇒ XTAT = I

I so we conclude
A is right-invertible if and only if its rows are linearly independent

I right-invertible matrices are wide or square
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Solving linear equations with a right inverse

I suppose A has a right inverse B

I consider the (square or underdetermined) equations Ax = b

I x = Bb is a solution:

Ax = A(Bb) = (AB)b = Ib = b

I so Ax = b has a solution for any b
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Example

I same A, B, C in example above

I CT and BT are both right inverses of AT

I under-determined equations ATx = (1,2) has (different) solutions

BT (1,2) = (1/3,2/3,38/9), CT (1,2) = (0,1/2,−1)

(there are many other solutions as well)
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Inverse

I if A has a left and a right inverse, they are unique and equal
(and we say that A is invertible)

I so A must be square

I to see this: if AX = I, YA = I

X = IX = (YA)X = Y (AX) = YI = Y

I we denote them by A−1:

A−1A = AA−1 = I

I inverse of inverse: (A−1)−1 = A
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Solving square systems of linear equations

I suppose A is invertible

I for any b, Ax = b has the unique solution

x = A−1b

I matrix generalization of simple scalar equation ax = b having solution
x = (1/a)b (for a , 0)

I simple-looking formula x = A−1b is basis for many applications
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Invertible matrices

the following are equivalent for a square matrix A:

I A is invertible

I columns of A are linearly independent

I rows of A are linearly independent

I A has a left inverse

I A has a right inverse

if any of these hold, all others do
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Examples

I I−1 = I

I if Q is orthogonal, i.e., square with QTQ = I, then Q−1 = QT

I 2 × 2 matrix A is invertible if and only A11A22 , A12A21

A−1 =
1

A11A22 − A12A21

[
A22 −A12
−A21 A11

]

– you need to know this formula
– there are similar but much more complicated formulas for larger matrices

(and no, you do not need to know them)
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Non-obvious example

A =


1 −2 3
0 2 2
−3 −4 −4



I A is invertible, with inverse

A−1 =
1

30



0 −20 −10
−6 5 −2

6 10 2


.

I verified by checking AA−1 = I (or A−1A = I)

I we’ll soon see how to compute the inverse
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Properties

I (AB)−1 = B−1A−1 (provided inverses exist)

I (AT )−1 = (A−1)T (sometimes denoted A−T )

I negative matrix powers: (A−1)k is denoted A−k

I with A0 = I, identity AkAl = Ak+l holds for any integers k, l
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Triangular matrices

I lower triangular L with nonzero diagonal entries is invertible

I so see this, write Lx = 0 as

L11x1 = 0
L21x1 + L22x2 = 0

...
Ln1x1 + Ln2x2 + · · · + Ln,n−1xn−1 + Lnnxn = 0

– from first equation, x1 = 0 (since L11 , 0)
– second equation reduces to L22x2 = 0, so x2 = 0 (since L22 , 0)
– and so on

this shows columns of L are linearly independent, so L is invertible

I upper triangular R with nonzero diagonal entries is invertible
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Inverse via QR factorization

I suppose A is square and invertible

I so its columns are linearly independent

I so Gram–Schmidt gives QR factorization
– A = QR
– Q is orthogonal: QT Q = I
– R is upper triangular with positive diagonal entries, hence invertible

I so we have
A−1 = (QR)−1 = R−1Q−1 = R−1QT

Introduction to Applied Linear Algebra Boyd & Vandenberghe 11.17



Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Introduction to Applied Linear Algebra Boyd & Vandenberghe 11.18



Back substitution

I suppose R is upper triangular with nonzero diagonal entries

I write out Rx = b as

R11x1 + R12x2 + · · · + R1,n−1xn−1 + R1nxn = b1

...

Rn−1,n−1xn−1 + Rn−1,nxn = bn−1

Rnnxn = bn

I from last equation we get xn = bn/Rnn

I from 2nd to last equation we get

xn−1 = (bn−1 − Rn−1,nxn)/Rn−1,n−1

I continue to get xn−2,xn−3, . . . ,x1
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Back substitution

I called back substitution since we find the variables in reverse order,
substituting the already known values of xi

I computes x = R−1b

I complexity:
– first step requires 1 flop (division)
– 2nd step needs 3 flops
– ith step needs 2i − 1 flops

total is 1 + 3 + · · · + (2n − 1) = n2 flops
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Solving linear equations via QR factorization

I assuming A is invertible, let’s solve Ax = b, i.e., compute x = A−1b

I with QR factorization A = QR, we have

A−1 = (QR)−1 = R−1QT

I compute x = R−1(QTb) by back substitution
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Solving linear equations via QR factorization

given an n × n invertible matrix A and an n-vector b

1. QR factorization: compute the QR factorization A = QR

2. compute QTb.
3. Back substitution: Solve the triangular equation Rx = QTb using back

substitution

I complexity 2n3 (step 1), 2n2 (step 2), n2 (step 3)
I total is 2n3 + 3n2 ≈ 2n3
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Multiple right-hand sides

I let’s solve Axi = bi, i = 1, . . . ,k, with A invertible

I carry out QR factorization once (2n3 flops)

I for i = 1, . . . ,k, solve Rxi = QTbi via back substitution (3kn2 flops)

I total is 2n3 + 2kn2 flops

I if k is small compared to n, same cost as solving one set of equations
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Polynomial interpolation

I let’s find coefficients of a cubic polynomial

p(x) = c1 + c2x + c3x2 + c4x3

that satisfies

p(−1.1) = b1, p(−0.4) = b2, p(0.1) = b3, p(0.8) = b4

I write as Ac = b, with

A =



1 −1.1 (−1.1)2 (−1.1)3

1 −0.4 (−0.4)2 (−0.4)3

1 0.1 (0.1)2 (0.1)3

1 0.8 (0.8)2 (0.8)3
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Polynomial interpolation

I (unique) coefficients given by c = A−1b, with

A−1 =



−0.0201 0.2095 0.8381 −0.0276
0.1754 −2.1667 1.8095 0.1817
0.3133 0.4762 −1.6667 0.8772
−0.6266 2.381 −2.381 0.6266



I so, e.g., c1 is not very sensitive to b1 or b4

I first column gives coefficients of polynomial that satisfies

p(−1.1) = 1, p(−0.4) = 0, p(0.1) = 0, p(0.8) = 0

called (first) Lagrange polynomial
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Example

−1.5 −1 −0.5 0 0.5 1
x

p(x)
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Lagrange polynomials

Lagrange polynomials associates with points −1.1, −0.4, 0.2, 0.8

−1 0 1

0

1

−1 0 1

0

1

−1 0 1

0

1

−1 0 1

0

1
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Invertibility of Gram matrix

I A has linearly independent columns if and only if ATA is invertible

I to see this, we’ll show that Ax = 0⇔ ATAx = 0

I ⇒: if Ax = 0 then (ATA)x = AT (Ax) = AT0 = 0

I ⇐: if (ATA)x = 0 then

0 = xT (ATA)x = (Ax)T (Ax) = ‖Ax‖2 = 0

so Ax = 0

Introduction to Applied Linear Algebra Boyd & Vandenberghe 11.30



Pseudo-inverse of tall matrix

I the pseudo-inverse of A with independent columns is

A† = (ATA)−1AT

I it is a left inverse of A:

A†A = (ATA)−1ATA = (ATA)−1(ATA) = I

(we’ll soon see that it’s a very important left inverse of A)

I reduces to A−1 when A is square:

A† = (ATA)−1AT = A−1A−TAT = A−1I = A−1
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Pseudo-inverse of wide matrix

I if A is wide, with linearly independent rows, AAT is invertible

I pseudo-inverse is defined as

A† = AT (AAT )−1

I A† is a right inverse of A:

AA† = AAT (AAT )−1 = I

(we’ll see later it is an important right inverse)

I reduces to A−1 when A is square:

AT (AAT )−1 = ATA−TA−1 = A−1
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Pseudo-inverse via QR factorization

I suppose A has linearly independent columns, A = QR

I then ATA = (QR)T (QR) = RTQTQR = RTR

I so

A† = (ATA)−1AT = (RTR)−1(QR)T = R−1R−TRTQT = R−1QT

I can compute A† using back substitution on columns of QT

I for A with linearly independent rows, A† = QR−T
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Least squares problem

I suppose m × n matrix A is tall, so Ax = b is over-determined

I for most choices of b, there is no x that satisfies Ax = b

I residual is r = Ax − b

I least squares problem: choose x to minimize ‖Ax − b‖2

I ‖Ax − b‖2 is the objective function

I x̂ is a solution of least squares problem if

‖Ax̂ − b‖2 ≤ ‖Ax − b‖2

for any n-vector x

I idea: x̂ makes residual as small as possible, if not 0

I also called regression (in data fitting context)
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Least squares problem

I x̂ called least squares approximate solution of Ax = b

I x̂ is sometimes called ‘solution of Ax = b in the least squares sense’
– this is very confusing
– never say this
– do not associate with people who say this

I x̂ need not (and usually does not) satisfy Ax̂ = b

I but if x̂ does satisfy Ax̂ = b, then it solves least squares problem
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Column interpretation

I suppose a1, . . . ,an are columns of A

I then
‖Ax − b‖2 = ‖(x1a1 + · · · + xnan) − b‖2

I so least squares problem is to find a linear combination of columns of A
that is closest to b

I if x̂ is a solution of least squares problem, the m-vector

Ax̂ = x̂1a1 + · · · + x̂nan

is closest to b among all linear combinations of columns of A
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Row interpretation

I suppose ãT
1 , . . . , ã

T
m are rows of A

I residual components are ri = ãT
i x − bi

I least squares objective is

‖Ax − b‖2 = (ãT
1 x − b1)2 + · · · + (ãT

mx − bm)2

the sum of squares of the residuals

I so least squares minimizes sum of squares of residuals
– solving Ax = b is making all residuals zero
– least squares attempts to make them all small
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Example

A =


2 0
−1 1
0 2


, b =



1
0
−1



−1 0 1
−1

0

1

x̂

f (x̂) + 1
f (x̂) + 2

x1

x 2

I Ax = b has no solution
I least squares problem is to choose x to minimize

‖Ax − b‖2 = (2x1 − 1)2 + (−x1 + x2)2 + (2x2 + 1)2

I least squares approximate solution is x̂ = (1/3,1/3) (say, via calculus)
I ‖Ax̂ − b‖2 = 2/3 is smallest posible value of ‖Ax − b‖2
I Ax̂ = (2/3,−2/3,−2/3) is linear combination of columns of A closest to b
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Solution of least squares problem

I we make one assumption: A has linearly independent columns

I this implies that Gram matrix ATA is invertible

I unique solution of least squares problem is

x̂ = (ATA)−1ATb = A†b

I cf. x = A−1b, solution of square invertible system Ax = b
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Derivation via calculus

I define

f (x) = ‖Ax − b‖2 =
m∑

i=1

*.
,

n∑
j=1

Aijxj − bi
+/
-

2

I solution x̂ satisfies

∂f
∂xk

(x̂) = ∇f (x̂)k = 0, k = 1, . . . ,n

I taking partial derivatives we get ∇f (x)k =
(
2AT (Ax − b)

)
k

I in matrix-vector notation: ∇f (x̂) = 2AT (Ax̂ − b) = 0

I so x̂ satisfies normal equations (ATA)x̂ = ATb

I and therefore x̂ = (ATA)−1ATb
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Direct verification

I let x̂ = (ATA)−1ATb, so AT (Ax̂ − b) = 0

I for any n-vector x we have

‖Ax − b‖2 = ‖(Ax − Ax̂) + (Ax̂ − b)‖2
= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 + 2(A(x − x̂))T (Ax̂ − b)
= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 + 2(x − x̂)TAT (Ax̂ − b)
= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2

I so for any x, ‖Ax − b‖2 ≥ ‖Ax̂ − b‖2

I if equality holds, A(x − x̂) = 0, which implies x = x̂ since columns of A are
linearly independent
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Computing least squares approximate solutions

I compute QR factorization of A: A = QR (2mn2 flops)

I QR factorization exists since columns of A are linearly independent

I to compute x̂ = A†b = R−1QTb
– form QT b (2mn flops)
– compute x̂ = R−1(QT b) via back substitution (n2 flops)

I total complexity 2mn2 flops

I identical to algorithm for solving Ax = b for square invertible A

I but when A is tall, gives least squares approximate solution
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Advertising purchases

I m demographics groups we want to advertise to

I vdes is m-vector of target views or impressions

I n-vector s gives spending on n advertising channels

I m × n matrix R gives demographic reach of channels

I Rij is number of views per dollar spent (in 1000/$)

I v = Rs is m-vector of views across demographic groups

I ‖vdes − Rs‖/√m is RMS deviation from desired views

I we’ll use least squares spending ŝ = R†vdes (need not be ≥ 0)
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Example

I m = 10 groups, n = 3 channels
I target views vector vdes = 103 × 1
I optimal spending is ŝ = (62,100,1443)

1 2 3 4 5 6 7 8 9 10

1

2

Group

Im
pr

es
si

on
s

Columns of matrix R

Channel 1
Channel 2
Channel 3

1 2 3 4 5 6 7 8 9 10

500

1,000

1,500

Group

Im
pr

es
si

on
s

Target νdes and achieved views Rŝ
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Illumination

I n lamps illuminate an area divided in m regions
I Aij is illumination in region i if lamp j is on with power 1, other lamps are off
I xj is power of lamp j
I (Ax)i is illumination level at region i
I bi is target illumination level at region i

0 25m
0

25m
1 (4.0m) 2 (3.5m)

3 (6.0m)

4 (4.0m)
5 (4.0m)

6 (6.0m)

7 (5.5m)

8 (5.0m) 9 (5.0m) 10 (4.5m)

figure shows lamp positions for
example with

m = 252, n = 10
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Illumination

I equal lamp powers (x = 1)
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I least squares solution x̂, with b = 1
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Setup

I we believe a scalar y and an n-vector x are related by model

y ≈ f (x)

I x is called the independent variable

I y is called the outcome or response variable

I f : Rn → R gives the relation between x and y

I often x is a feature vector, and y is something we want to predict

I we don’t know f , which gives the ‘true’ relationship between x and y
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Data

I we are given some data

x(1) , . . . ,x(N) , y(1) , . . . ,y(N)

also called observations, examples, samples, or measurements

I x(i) ,y(i) is ith data pair

I x(i)
j is the jth component of ith data point x(i)
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Model

I choose model f̂ : Rn → R, a guess or approximation of f

I linear in the parameters model form:

f̂ (x) = θ1f1(x) + · · · + θpfp(x)

I fi : Rn → R are basis functions that we choose

I θi are model parameters that we choose

I ŷ(i) = f̂ (x(i)) is (the model’s) prediction of y(i)

I we’d like ŷ(i) ≈ y(i) , i.e., model is consistent with observed data
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Least squares data fitting

I prediction error or residual is ri = y(i) − ŷ(i)

I least squares data fitting: choose model parameters θi to minimize RMS
prediction error on data set(

(r(1))2 + · · · + (r(N))2

N

)1/2

I this can be formulated (and solved) as a least squares problem
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Least squares data fitting

I express y(i) , ŷ(i) , and r(i) as N-vectors
– yd = (y(1) , . . . ,y(N) ) is vector of outcomes
– ŷd = (ŷ(1) , . . . , ŷ(N) ) is vector of predictions
– rd = (r(1) , . . . ,r(N) ) is vector of residuals

I rms(rd) is RMS prediction error

I define N × p matrix A with elements Aij = fj(x(i)), so ŷd = Aθ

I least squares data fitting: choose θ to minimize

‖rd‖2 = ‖yd − ŷd‖2 = ‖yd − Aθ‖2 = ‖Aθ − yd‖2

I θ̂ = (ATA)−1ATy (if columns of A are linearly independent)

I ‖Aθ̂ − y‖2/N is minimum mean-square (fitting) error

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.6



Fitting a constant model

I simplest possible model: p = 1, f1(x) = 1, so model f̂ (x) = θ1 is a constant

I A = 1, so
θ̂1 = (1T1)−11Tyd = (1/N)1Tyd = avg(yd)

I the mean of y(1) , . . . ,y(N) is the least squares fit by a constant

I MMSE is std(yd)2; RMS error is std(yd)

I more sophisticated models are judged against the constant model
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Fitting univariate functions

I when n = 1, we seek to approximate a function f : R→ R

I we can plot the data (xi,yi) and the model function ŷ = f̂ (x)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.8



Straight-line fit

I p = 2, with f1(x) = 1, f2(x) = x

I model has form f̂ (x) = θ1 + θ2x

I matrix A has form

A =



1 x(1)

1 x(2)

...
...

1 x(N)


I can work out θ̂1 and θ̂2 explicitly:

f̂ (x) = avg(yd) + ρ
std(yd)
std(xd)

(x − avg(xd))

where xd = (x(1) , . . . ,x(N))
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Example

x

f̂ (x)
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Asset α and β

I x is return of whole market, y is return of a particular asset

I write straight-line model as

ŷ = (rrf + α) + β(x − µmkt)

– µmkt is the average market return
– rrf is the risk-free interest rate
– several other slightly different definitions are used

I called asset ‘α’ and ‘β’, widely used

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.11



Time series trend

I y(i) is value of quantity at time x(i) = i

I ŷ(i) = θ̂1 + θ̂2i, i = 1, . . . ,N, is called trend line

I yd − ŷd is called de-trended time series

I θ̂2 is trend coefficient
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World petroleum consumption
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Polynomial fit

I fi(x) = xi−1, i = 1, . . . ,p

I model is a polynomial of degree less than p

f̂ (x) = θ1 + θ2x + · · · + θpxp−1

(here xi means scalar x to ith power; x(i) is ith data point)

I A is Vandermonde matrix

A =



1 x(1) · · · (x(1))p−1

1 x(2) · · · (x(2))p−1

...
...

...
1 x(N) · · · (x(N))p−1
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Example

N = 100 data points

x

f̂ (x) degree 2 (p = 3)

x

f̂ (x) degree 6

x

f̂ (x)
degree 10

x

f̂ (x) degree 15
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Regression as general data fitting

I regression model is affine function ŷ = f̂ (x) = xT β + v

I fits general fitting form with basis functions

f1(x) = 1, fi(x) = xi−1, i = 2, . . . ,n + 1

so model is
ŷ = θ1 + θ2x1 + · · · + θn+1xn = xTθ2:n + θ1

I β = θ2:n+1, v = θ1
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General data fitting as regression

I general fitting model f̂ (x) = θ1f1(x) + · · · + θpfp(x)

I common assumption: f1(x) = 1

I same as regression model f̂ (x̃) = x̃T β + v, with
– x̃ = (f2(x), . . . , fp(x)) are ‘transformed features’
– v = θ1, β = θ2:p

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.17



Auto-regressive time series model

I time zeries z1,z2, . . .

I auto-regressive (AR) prediction model:

ẑt+1 = θ1zt + · · · + θMzt−M+1, t = M,M + 1, . . .

I M is memory of model

I ẑt+1 is prediction of next value, based on previous M values

I we’ll choose β to minimize sum of squares of prediction errors,

(ẑM+1 − zM+1)2 + · · · + (ẑT − zT )2

I put in general form with

y(i) = zM+i, x(i) = (zM+i−1, . . . ,zi), i = 1, . . . ,T −M
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Example

I hourly temperature at LAX in May 2016, length 744

I average is 61.76◦F, standard deviation 3.05◦F

I predictor ẑt+1 = zt gives RMS error 1.16◦F

I predictor ẑt+1 = zt−23 gives RMS error 1.73◦F

I AR model with M = 8 gives RMS error 0.98◦F
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Example

solid line shows one-hour ahead predictions from AR model, first 5 days
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Outline

Least squares model fitting

Validation

Feature engineering
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Generalization

basic idea:
I goal of model is not to predict outcome for the given data
I instead it is to predict the outcome on new, unseen data

I a model that makes reasonable predictions on new, unseen data has
generalization ability, or generalizes

I a model that makes poor predictions on new, unseen data is said to suffer
from over-fit
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Validation

a simple and effective method to guess if a model will generalize

I split original data into a training set and a test set

I typical splits: 80%/20%, 90%/10%

I build (‘train’) model on training data set

I then check the model’s predictions on the test data set

I (can also compare RMS prediction error on train and test data)

I if they are similar, we can guess the model will generalize
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Validation

I can be used to choose among different candidate models, e.g.
– polynomials of different degrees
– regression models with different sets of regressors

I we’d use one with low, or lowest, test error
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Example

models fit using training set of 100 points; plots show test set of 100 points
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Example

I suggests degree 4, 5, or 6 are reasonable choices
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Cross validation

to carry out cross validation:
I divide data into 10 folds
I for i = 1, . . . ,10, build (train) model using all folds except i
I test model on data in fold i

interpreting cross validation results:
I if test RMS errors are much larger than train RMS errors, model is over-fit
I if test and train RMS errors are similar and consistent, we can guess the

model will have a similar RMS error on future data

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.27



Example

I house price, regression fit with x = (area/1000 ft.2, bedrooms)
I 774 sales, divided into 5 folds of 155 sales each
I fit 5 regression models, removing each fold

Model parameters RMS error

Fold v β1 β2 Train Test

1 60.65 143.36 −18.00 74.00 78.44
2 54.00 151.11 −20.30 75.11 73.89
3 49.06 157.75 −21.10 76.22 69.93
4 47.96 142.65 −14.35 71.16 88.35
5 60.24 150.13 −21.11 77.28 64.20
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Outline

Least squares model fitting

Validation

Feature engineering
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Feature engineering

I start with original or base feature n-vector x
I choose basis functions f1, . . . , fp to create ‘mapped’ feature p-vector

(f1(x), . . . , fp(x))

I now fit linear in parameters model with mapped features

ŷ = θ1f1(x) + · · · + θpfp(x)

I check the model using validation
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Transforming features

I standardizing features: replace xi with

(xi − bi)/ai

– bi ≈ mean value of the feature across the data
– ai ≈ standard deviation of the feature across the data

new features are called z-scores

I log transform: if xi is nonnegative and spans a wide range, replace it with

log(1 + xi)

I hi and lo features: create new features given by

max{x1 − b,0}, min{x1 − a,0}

(called hi and lo versions of original feature xi)
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Example

I house price prediction

I start with base features
– x1 is area of house (in 1000ft.2)
– x2 is number of bedrooms
– x3 is 1 for condo, 0 for house
– x4 is zip code of address (62 values)

I we’ll use p = 8 basis functions:
– f1(x) = 1, f2(x) = x1, f3(x) = max{x1 − 1.5,0}
– f4(x) = x2, f5(x) = x3
– f6(x), f7(x), f8(x) are Boolean functions of x4 which encode 4 groups of

nearby zip codes (i.e., neighborhood)

I five fold model validation
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Example

Model parameters RMS error

Fold θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 Train Test

1 122.35 166.87 −39.27 −16.31 −23.97 −100.42 −106.66 −25.98 67.29 72.78
2 100.95 186.65 −55.80 −18.66 −14.81 −99.10 −109.62 −17.94 67.83 70.81
3 133.61 167.15 −23.62 −18.66 −14.71 −109.32 −114.41 −28.46 69.70 63.80
4 108.43 171.21 −41.25 −15.42 −17.68 −94.17 −103.63 −29.83 65.58 78.91
5 114.45 185.69 −52.71 −20.87 −23.26 −102.84 −110.46 −23.43 70.69 58.27
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14. Least squares classification



Outline
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Least squares classification

Multi-class classifiers
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Classification

I data fitting with outcome that takes on (non-numerical) values like
– true or false
– spam or not spam
– dog, horse, or mouse

I outcome values are called labels or categories

I data fitting is called classification

I we start with case when there are two possible outcomes

I called Boolean or 2-way classification

I we encode outcomes as +1 (true) and −1 (false)

I classifier has form ŷ = f̂ (x), f : Rn → {−1,+1}
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Applications

I email spam detection
– x contains features of an email message (word counts, . . . )

I financial transaction fraud detection
– x contains features of proposed transaction, initiator

I document classification (say, politics or not)
– x is word count histogram of document

I disease detection
– x contains patient features, results of medical tests

I digital communications receiver
– y is transmitted bit; x contain n measurements of received signal
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Prediction errors

I data point (x,y), predicted outcome ŷ = f̂ (x)

I only four possibilities:
– True positive. y = +1 and ŷ = +1.
– True negative. y = −1 and ŷ = −1.

(in these two cases, the prediction is correct)
– False positive. y = −1 and ŷ = +1.
– False negative. y = +1 and ŷ = −1.

(in these two cases, the prediction is wrong)

I the errors have many other names, like Type I and Type II
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Confusion matrix

I given data set x(1) , . . . ,x(N) , y(1) , . . . ,y(N) and classifier f̂

I count each of the four outcomes

ŷ = +1 ŷ = −1 Total

y = +1 Ntp Nfn Np
y = −1 Nfp Ntn Nn

All Ntp + Nfp Nfn + Ntp N

I off-diagonal terms are prediction errors

I many error rates and accuracy measures are used
– error rate is (Nfp + Nfn)/N
– true positive (or recall) rate is Ntp/Np
– false positive rate (or false alarm rate) is Nfp/Nn

I a proposed classifier is judged by its error rate(s) on a test set

Introduction to Applied Linear Algebra Boyd & Vandenberghe 14.5



Example

I spam filter performance on a test set (say)

ŷ = +1 (spam) ŷ = −1 (not spam) Total

y = +1 (spam) 95 32 127
y = −1 (not spam) 19 1120 1139

All 114 1152 1266

I error rate is (19 + 32)/1266 = 4.03%

I false positive rate is 19/1139 = 1.67%
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Least squares classification

I fit model f̃ to encoded (±1) y(i) values using standard least squares data
fitting

I f̃ (x) should be near +1 when y = +1, and near −1 when y = −1

I f̃ (x) is a number

I use model f̂ (x) = sign(f̃ (x))

I (size of f̃ (x) is related to the ‘confidence’ in the prediction)
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Handwritten digits example

I MNIST data set of 70000 28 × 28 images of digits 0, . . . , 9

I divided into training set (60000) and test set (10000)
I x is 494-vector, constant 1 plus the 493 pixel values with nonzero values in

at least 600 training examples
I y = +1 if digit is 0; −1 otherwise
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Least squares classifier results

I training set results (error rate 1.6%)

ŷ = +1 ŷ = −1 Total

y = +1 5158 765 5923
y = −1 167 53910 54077
All 5325 54675 60000

I test set results (error rate 1.6%)

ŷ = +1 ŷ = −1 Total

y = +1 864 116 980
y = −1 42 8978 9020
All 906 9094 10000

I we can likely achieve 1.6% error rate on unseen images
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Distribution of least squares fit

distribution of values of f̃ (x(i)) over training set
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Coefficients in least squares classifier
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Skewed decision threshold

I use predictor f̂ (x) = sign(f̃ (x) − α), i.e.,

f̂ (x) =
{
+1 f̃ (x) ≥ α
−1 f̃ (x) < α

I α is the decision threshold

I for positive α, false positive rate is lower but so is true positive rate

I for negative α, false positive rate is higher but so is true positive rate

I trade off curve of true positive versus false positive rates is called receiver
operating characteristic (ROC)
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Example
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ROC curve
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Multi-class classifiers

I we have K > 2 possible labels, with label set {1, . . . ,K}
I predictor is f̂ : Rn → {1, . . . ,K}
I for given predictor and data set, confusion matrix is K × K

I some off-diagonal entries may be much worse than others
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Examples

I handwritten digit classification
– guess the digit written, from the pixel values

I marketing demographic classification
– guess the demographic group, from purchase history

I disease diagnosis
– guess diagnosis from among a set of candidates, from test results, patient

features

I translation word choice
– choose how to translate a word into several choices, given context features

I document topic prediction
– guess topic from word count histogram
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Least squares multi-class classifier

I create a least squares classifier for each label versus the others

I take as classifier
f̂ (x) = argmax

`∈{1, ...,K }
f̃` (x)

(i.e., choose ` with largest value of f̃` (x))

I for example, with

f̃1(x) = −0.7, f̃2(x) = +0.2, f̃3(x) = +0.8

we choose f̂ (x) = 3
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Handwritten digit classification

confusion matrix, test set

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 944 0 1 2 2 8 13 2 7 1 980
1 0 1107 2 2 3 1 5 1 14 0 1135
2 18 54 815 26 16 0 38 22 39 4 1032
3 4 18 22 884 5 16 10 22 20 9 1010
4 0 22 6 0 883 3 9 1 12 46 982
5 24 19 3 74 24 656 24 13 38 17 892
6 17 9 10 0 22 17 876 0 7 0 958
7 5 43 14 6 25 1 1 883 1 49 1028
8 14 48 11 31 26 40 17 13 756 18 974
9 16 10 3 17 80 0 1 75 4 803 1009
All 1042 1330 887 1042 1086 742 994 1032 898 947 10000

error rate is around 14% (same as for training set)
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Adding new features

I let’s add 5000 random features (!), max{(Rx)j,0}
– R is 5000 × 494 matrix with entries ±1, chosen randomly

I now use least squares classification with 5494 feature vector

I results: training set error 1.5%, test set error 2.6%

I can do better with a little more thought in generating new features

I indeed, even better than humans can do (!!)
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Results with new features

confusion matrix, test set

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 972 0 0 2 0 1 1 1 3 0 980
1 0 1126 3 1 1 0 3 0 1 0 1135
2 6 0 998 3 2 0 4 7 11 1 1032
3 0 0 3 977 0 13 0 5 8 4 1010
4 2 1 3 0 953 0 6 3 1 13 982
5 2 0 1 5 0 875 5 0 3 1 892
6 8 3 0 0 4 6 933 0 4 0 958
7 0 8 12 0 2 0 1 992 3 10 1028
8 3 1 3 6 4 3 2 2 946 4 974
9 4 3 1 12 11 7 1 3 3 964 1009
All 997 1142 1024 1006 977 905 956 1013 983 997 10000
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15. Multi-objective least squares
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Multi-objective least squares

I goal: choose n-vector x so that k norm squared objectives

J1 = ‖A1x − b1‖2, . . . , Jk = ‖Akx − bk‖2

are all small

I Ai is an mi × n matrix, bi is an mi-vector, i = 1, . . . ,k

I Ji are the objectives in a multi-objective optimization problem
(also called a multi-criterion problem)

I could choose x to minimize any one Ji, but we want one x that makes them
all small
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Weighted sum objective

I choose positive weights λ1, . . . , λk and form weighted sum objective

J = λ1J1 + · · · + λkJk = λ1‖A1x − b1‖2 + · · · + λk‖Akx − bk‖2

I we’ll choose x to minimize J

I we can take λ1 = 1, and call J1 the primary objective

I interpretation of λi: how much we care about Ji being small, relative to
primary objective

I for a bi-criterion problem, we will minimize

J1 + λJ2 = ‖A1x − b1‖2 + λ‖A2x − b2‖2
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Weighted sum minimization via stacking

I write weighted-sum objective as

J =





√
λ1(A1x − b1)

...√
λk (Akx − bk)





2

I so we have J = ‖Ãx − b̃‖2, with

Ã =



√
λ1A1
...√
λkAk



, b̃ =



√
λ1b1
...√
λkbk


I so we can minimize J using basic (‘single-criterion’) least squares
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Weighted sum solution

I assuming columns of Ã are independent,

x̂ = (ÃT Ã)−1ÃT b̃

= (λ1AT
1 A1 + · · · + λkAT

k Ak)−1(λ1AT
1 b1 + · · · + λkAT

k bk)

I can compute x̂ via QR factorization of Ã

I Ai can be wide, or have dependent columns
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Optimal trade-off curve

I bi-criterion problem with objectives J1, J2

I let x̂(λ) be minimizer of J1 + λJ2

I called Pareto optimal: there is no point z that satisfies

J1(z) < J1(x̂(λ)), J2(z) < J2(x̂(λ))

i.e., no other point x beats x̂ on both objectives

I optimal trade-off curve: (J1(x̂(λ)),J2(x̂(λ))) for λ > 0
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Example

A1 and A2 both 10 × 5
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Objectives versus λ and optimal trade-off curve
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Using multi-objective least squares

I identify the primary objective
– the basic quantity we want to minimize

I choose one or more secondary objectives
– quantities we’d also like to be small, if possible
– e.g., size of x, roughness of x, distance from some given point

I tweak/tune the weights until we like (or can tolerate) x̂(λ)

I for bi-criterion problem with J = J1 + λJ2:
– if J2 is too big, increase λ
– if J1 is too big, decrease λ
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Control

I n-vector x corresponds to actions or inputs

I m-vector y corresponds to results or outputs

I inputs and outputs are related by affine input-output model

y = Ax + b

I A and b are known (from analytical models, data fitting . . . )

I the goal is to choose x (which determines y), to optimize multiple
objectives on x and y
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Multi-objective control

I typical primary objective: J1 = ‖y − ydes‖2, where ydes is a given desired or
target output

I typical secondary objectives:
– x is small: J2 = ‖x‖2
– x is not far from a nominal input: J2 = ‖x − xnom‖2
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Product demand shaping

I we will change prices of n products by n-vector δprice

I this induces change in demand δdem = Edδprice

I Ed is the n × n price elasticity of demand matrix

I we want J1 = ‖δdem − δtar‖2 small

I and also, we want J2 = ‖δprice‖2 small

I so we minimize J1 + λJ2, and adjust λ > 0

I trades off deviation from target demand and price change magnitude

Introduction to Applied Linear Algebra Boyd & Vandenberghe 15.13



Robust control

I we have K different input-output models (a.k.a. scenarios)

y(k) = A(k)x + b(k) , k = 1, . . . ,K

I these represent uncertainty in the system

I y(k) is the output with input x, if system model k is correct

I average cost across the models:

1
K

K∑
k=1

‖y(k) − ydes‖2

I can add terms for x as well, e.g., λ‖x‖2

I yields choice of x that does well under all scenarios
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Estimation

I measurement model: y = Ax + v

I n-vector x contains parameters we want to estimate

I m-vector y contains the measurements

I m-vector v are (unknown) noises or measurement errors

I m × n matrix A connects parameters to measurements

I basic least squares estimation: assuming v is small (and A has
independent columns), we guess x by minimizing J1 = ‖Ax − y‖2
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Regularized inversion

I can get far better results by incorporating prior information about x into
estimation, e.g.,

– x should be not too large
– x should be smooth

I express these as secondary objectives:
– J2 = ‖x‖2 (‘Tikhonov regularization’)
– J2 = ‖Dx‖2

I we minimize J1 + λJ2

I adjust λ until you like the results

I curve of x̂(λ) versus λ is called regularization path

I with Tikhonov regularization, works even when A has dependent columns
(e.g., when it is wide)
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Image de-blurring

I x is an image

I A is a blurring operator

I y = Ax + v is a blurred, noisy image

I least squares de-blurring: choose x to minimize

‖Ax − y‖2 + λ(‖Dvx‖2 + ‖Dhx‖2)

Dv, Dh are vertical and horizontal differencing operations

I λ controls smoothing of de-blurred image
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Example

blurred, noisy image regularized inversion with λ = 0.007

Image credit: NASA
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Regularization path

λ = 10−6 λ = 10−4
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Regularization path

λ = 10−2 λ = 1
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Tomography

I x represents values in region of interest of n voxels (pixels)

I y = Ax + v are measurements of integrals along lines through region

yi =

n∑
i=1

Aijxj + vi

I Aij is the length of the intersection of the line in measurement i with voxel j

line in measurement i

x1 x2

x6
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Least squares tomographic reconstruction

I primary objective is ‖Ax − y‖2

I regularization terms capture prior information about x

I for example, if x varies smoothly over region, use Dirichlet energy for graph
that connects each voxel to its neighbors
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Example

I left: 4000 lines (100 points, 40 lines per point)

I right: object placed in the square region on the left

I region of interest is divided in 10000 pixels
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Regularized least squares reconstruction

λ = 10−2 λ = 10−1 λ = 1

λ = 5 λ = 10 λ = 100

Introduction to Applied Linear Algebra Boyd & Vandenberghe 15.25



Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting
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Motivation for regularization

I consider data fitting model (of relationship y ≈ f (x))

f̂ (x) = θ1f1(x) + · · · + θpfp(x)

with f1(x) = 1

I θi is the sensitivity of f̂ (x) to fi(x)

I so large θi means the model is very sensitive to fi(x)

I θ1 is an exception, since f1(x) = 1 never varies

I so, we don’t want θ2, . . . , θp to be too large
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Regularized data fitting

I suppose we have data (x1,y1), . . . , (xN ,yN )

I express fitting error as Aθ − y

I regularized data fitting: choose θ to minimize

‖Aθ − y‖2 + λ‖θ2:p‖2

I λ > 0 is the regularization parameter

I for regression model ŷ = XT β + v1, we minimize

‖XT β + v1 − y‖2 + λ‖ β‖2

I choose λ by validation on a test set
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Example

0 0.5 1

−1

0

1

2

3

x

Train
Test

I solid line is signal used to generate synthetic (simulated) data
I 10 blue points are used as training set; 20 red points are used as test set
I we fit a model with five parameters θ1, . . . , θ5:

f̂ (x) = θ1 +

4∑
k=1

θk+1 cos(ωkx + φk) (with given ωk, φk)
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Result of regularized least squares fit

10−5 10−3 10−1 101 103 105
0

0.5

1

λ

RMS error versus λ

Train
Test

10−5 10−3 10−1 101 103 105
−2

−1

0

1

2

λ

Coefficients versus λ

θ1
θ2
θ3
θ4
θ5

I minimum test RMS error is for λ around 0.08
I increasing λ ‘shrinks’ the coefficients θ2, . . . , θ5

I dashed lines show coefficients used to generate the data
I for λ near 0.08, estimated coefficients are close to these ‘true’ values
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16. Constrained least squares



Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem
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Least squares with equality constraints

I the (linearly) constrained least squares problem (CLS) is

minimize ‖Ax − b‖2
subject to Cx = d

I variable (to be chosen/found) is n-vector x

I m × n matrix A, m-vector b, p × n matrix C, and p-vector d are problem
data (i.e., they are given)

I ‖Ax − b‖2 is the objective function

I Cx = d are the equality constraints

I x is feasible if Cx = d

I x̂ is a solution of CLS if Cx̂ = d and ‖Ax̂ − b‖2 ≤ ‖Ax − b‖2 holds for any
n-vector x that satisfies Cx = d
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Least squares with equality constraints

I CLS combines solving linear equations with least squares problem

I like a bi-objective least squares problem, with infinite weight on second
objective ‖Cx − d‖2
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Piecewise-polynomial fitting

I piecewise-polynomial f̂ has form

f̂ (x) =
{

p(x) = θ1 + θ2x + θ3x2 + θ4x3 x ≤ a
q(x) = θ5 + θ6x + θ7x2 + θ8x3 x > a

(a is given)

I we require p(a) = q(a), p′(a) = q′(a)

I fit f̂ to data (xi,yi), i = 1, . . . ,N by minimizing sum square error

N∑
i=1

(f̂ (xi) − yi)2

I can express as a constrained least squares problem
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Example

a

p(x)

q(x)

x

f̂ (x)
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Piecewise-polynomial fitting

I constraints are (linear equations in θ)

θ1 + θ2a + θ3a2 + θ4a3 − θ5 − θ6a − θ7a2 − θ8a3 = 0
θ2 + 2θ3a + 3θ4a2 − θ6 − 2θ7a − 3θ8a2 = 0

I prediction error on (xi,yi) is aT
i θ − yi, with

(ai)j =

{
(1,xi,x2

i ,x
3
i ,0,0,0,0) xi ≤ a

(0,0,0,0,1,xi,x2
i ,x

3
i ) xi > a

I sum square error is ‖Aθ − y‖2, where aT
i are rows of A

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.6



Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem
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Least norm problem

I special case of constrained least squares problem, with A = I, b = 0

I least-norm problem:
minimize ‖x‖2
subject to Cx = d

i.e., find the smallest vector that satisfies a set of linear equations
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Force sequence

I unit mass on frictionless surface, initially at rest

I 10-vector f gives forces applied for one second each

I final velocity and position are

vfin = f1 + f2 + · · · + f10

pfin = (19/2)f1 + (17/2)f2 + · · · + (1/2)f10

I let’s find f for which vfin = 0, pfin = 1

I f bb = (1,−1,0, . . . ,0) works (called ‘bang-bang’)
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Bang-bang force sequence
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Least norm force sequence

I let’s find least-norm f that satisfies pfin = 1, vfin = 0

I least-norm problem:

minimize ‖f ‖2

subject to
[

1 1 · · · 1 1
19/2 17/2 · · · 3/2 1/2

]
f =

[
0
1

]

with variable f

I solution f ln satisfies ‖f ln‖2 = 0.0121 (compare to ‖f bb‖2 = 2)
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Least norm force sequence
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Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem
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Optimality conditions via calculus

to solve constrained optimization problem

minimize f (x) = ‖Ax − b‖2
subject to cT

i x = di, i = 1, . . . ,p

1. form Lagrangian function, with Lagrange multipliers z1, . . . ,zp

L(x,z) = f (x) + z1(cT
1 x − d1) + · · · + zp(cT

p x − dp)

2. optimality conditions are

∂L
∂xi

(x̂,z) = 0, i = 1, . . . ,n,
∂L
∂zi

(x̂,z) = 0, i = 1, . . . ,p
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Optimality conditions via calculus

I
∂L
∂zi

(x̂,z) = cT
i x̂ − di = 0, which we already knew

I first n equations are more interesting:

∂L
∂xi

(x̂,z) = 2
n∑

j=1

(ATA)ijx̂j − 2(ATb)i +

p∑
j=1

zjci = 0

I in matrix-vector form: 2(ATA)x̂ − 2ATb + CTz = 0

I put together with Cx̂ = d to get Karush–Kuhn–Tucker (KKT) conditions
[

2ATA CT

C 0

] [
x̂
z

]
=

[
2ATb

d

]

a square set of n + p linear equations in variables x̂, z

I KKT equations are extension of normal equations to CLS

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.15



Solution of constrained least squares problem

I assuming the KKT matrix is invertible, we have
[

x̂
z

]
=

[
2ATA CT

C 0

]−1 [
2ATb

d

]

I KKT matrix is invertible if and only if

C has linearly independent rows,
[

A
C

]
has linearly independent columns

I implies m + p ≥ n, p ≤ n

I can compute x̂ in 2mn2 + 2(n + p)3 flops; order is n3 flops
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Direct verification of solution

I to show that x̂ is solution, suppose x satisfies Cx = d

I then

‖Ax − b‖2 = ‖(Ax − Ax̂) + (Ax̂ − b)‖2
= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 + 2(Ax − Ax̂)T (Ax̂ − b)

I expand last term, using 2AT (Ax̂ − b) = −CTz, Cx = Cx̂ = d:

2(Ax − Ax̂)T (Ax̂ − b) = 2(x − x̂)TAT (Ax̂ − b)
= −(x − x̂)TCTz

= −(C(x − x̂))Tz

= 0

I so ‖Ax − b‖2 = ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 ≥ ‖Ax̂ − b‖2

I and we conclude x̂ is solution
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Solution of least-norm problem

I least-norm problem: minimize ‖x‖2 subject to Cx = d

I matrix
[

I
C

]
always has independent columns

I we assume that C has independent rows

I optimality condition reduces to
[

2I CT

C 0

] [
x̂
z

]
=

[
0
d

]

I so x̂ = −(1/2)CTz; second equation is then −(1/2)CCTz = d

I plug z = −2(CCT )−1d into first equation to get

x̂ = CT (CCT )−1d = C†d

where C† is (our old friend) the pseudo-inverse
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so when C has linearly independent rows:
I C† is a right inverse of C

I so for any d, x̂ = C†d satisfies Cx̂ = d

I and we now know: x̂ is the smallest solution of Cx = d
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17. Constrained least squares applications



Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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Portfolio allocation weights

I we invest a total of V dollars in n different assets (stocks, bonds, . . . ) over
some period (one day, week, month, . . . )

I can include short positions, assets you borrow and sell at the beginning,
but must return to the borrower at the end of the period

I portfolio allocation weight vector w gives the fraction of our total portfolio
value held in each asset

I Vwj is the dollar value of asset j you hold
I 1Tw = 1, with negative wi meaning a short position
I w = (−0.2,0.0,1.2) means we take a short position of 0.2V in asset 1,

don’t hold any of asset 2, and hold 1.2V in asset 3

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.2



Leverage, long-only portfolios, and cash

I leverage is L = |w1 | + · · · + |wn |
((L − 1)/2 is also sometimes used)

I L = 1 when all weights are nonnegative (‘long only portfolio’)

I w = 1/n is called the uniform portfolio

I we often assume asset n is ‘risk-free’ (or cash or T-bills)

I so w = en means the portfolio is all cash
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Return over a period

I r̃j is the return of asset j over the period
I r̃j is the fractional increase in price or value (decrease if negative)
I often expressed as a percentage, like +1.1% or −2.3%

I full portfolio return is
V+ − V

V
= r̃Tw

where V+ is the portfolio value at the end of the period
I if you hold portfolio for t periods with returns r1, . . . ,rt value is

Vt+1 = V1(1 + r1)(1 + r2) · · · (1 + rt)

I portfolio value versus time traditionally plotted using V1 = $10000
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Return matrix

I hold portfolio with weights w over T periods

I define T × n (asset) return matrix, with Rtj the return of asset j in period t

I row t of R is r̃T
t , where r̃t is the asset return vector over period t

I column j of R is time series of asset j returns

I portfolio returns vector (time series) is T-vector r = Rw

I if last asset is risk-free, the last column of R is µrf1, where µrf is the
risk-free per-period interest rate
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Portfolio return and risk

I r is time series (vector) of portfolio returns

I average return or just return is avg(r)

I risk is std(r)

I these are the per-period return and risk

I for small per-period returns we have

VT+1 = V1(1 + r1) · · · (1 + rT )
≈ V1 + V1(r1 + · · · + rT )
= V1 + T avg(r)V1

I so return approximates the average per-period increase in portfolio value
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Annualized return and risk

I mean return and risk are often expressed in annualized form (i.e., per year)

I if there are P trading periods per year

annualized return = P avg(r), annualized risk =
√

P std(r)

(the squareroot in risk annualization comes from the assumption that the
fluctuations in return around the mean are independent)

I if returns are daily, with 250 trading days in a year

annualized return = 250 avg(r), annualized risk =
√

250 std(r)
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Portfolio optimization

I how should we choose the portfolio weight vector w?

I we want high (mean) portfolio return, low portfolio risk

I we know past realized asset returns but not future ones

I we will choose w that would have worked well on past returns

I . . . and hope it will work well going forward (just like data fitting)
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Portfolio optimization

minimize std(Rw)2 = (1/T)‖Rw − ρ1‖2
subject to 1Tw = 1

avg(Rw) = ρ

I w is the weight vector we seek
I R is the returns matrix for past returns
I Rw is the (past) portfolio return time series
I require mean (past) return ρ
I we minimize risk for specified value of return
I solutions w are Pareto optimal

I we are really asking what would have been the best constant allocation,
had we known future returns
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Portfolio optimization via constrained least squares

minimize ‖Rw − ρ1‖2

subject to
[

1T

µT

]
w =

[
1
ρ

]

I µ = RT1/T is n-vector of (past) asset returns

I ρ is required (past) portfolio return

I an equality constrained least squares problem, with solution



w
z1
z2


=



2RTR 1 µ
1T 0 0
µT 0 0



−1 

2ρTµ
1
ρ
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Optimal portfolios

I perform significantly better than individual assets

I risk-return curve forms a straight line

I one end of the line is the risk-free asset

I two-fund theorem: optimal portfolio w is an affine function of ρ



w
z1
z2


=



2RTR 1 µ
1T 0 0
µT 0 0



−1 

RT1
1
ρT
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The big assumption

I now we make the big assumption (BA):
future returns will look something like past ones

– you are warned this is false, every time you invest
– it is often reasonably true
– in periods of ‘market shift’ it’s much less true

I if BA holds (even approximately), then a good weight vector for past
(realized) returns should be good for future (unknown) returns

I for example:
– choose w based on last 2 years of returns
– then use w for next 6 months
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Example

20 assets over 2000 days
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Pareto optimal portfolios
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Five portfolios

Return Risk

Portfolio Train Test Train Test Leverage

risk-free 0.01 0.01 0.00 0.00 1.00
ρ = 10% 0.10 0.08 0.09 0.07 1.96
ρ = 20% 0.20 0.15 0.18 0.15 3.03
ρ = 40% 0.40 0.30 0.38 0.31 5.48
1/n (uniform weights) 0.10 0.21 0.23 0.13 1.00

I train period of 2000 days used to compute optimal portfolio
I test period is different 500-day period
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Total portfolio value
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Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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Linear dynamical system

xt+1 = Atxt + Btut, yt = Ctxt, t = 1,2, . . .

I n-vector xt is state at time t

I m-vector ut is input at time t

I p-vector yt is output at time t

I n × n matrix At is dynamics matrix

I n × m matrix Bt is input matrix

I p × n matrix Ct is output matrix

I xt, ut, yt often represent deviations from a standard operating condition
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Linear quadratic control

minimize Joutput + ρJinput
subject to xt+1 = Atxt + Btut, t = 1, . . . ,T − 1

x1 = xinit, xT = xdes

I variables are state sequence x1, . . . ,xT and input sequence u1, . . . ,uT−1

I two objectives are quadratic functions of state and input sequences:

Joutput = ‖y1‖2 + · · · + ‖yT ‖2 = ‖C1x1‖2 + · · · + ‖CTxT ‖2
Jinput = ‖u1‖2 + · · · + ‖uT−1‖2

I first constraint imposes the linear dynamics equations
I second set of constraints specifies the initial and final state
I ρ is positive parameter used to trade off the two objectives
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Constrained least squares formulation

minimize ‖C1x1‖2 + · · · + ‖CTxT ‖2 + ρ‖u1‖2 + · · · + ‖uT−1‖2
subject to xt+1 = Atxt + Btut, t = 1, . . . ,T − 1

x1 = xinit, xT = xdes

I can be written as
minimize ‖Ãz − b̃‖2
subject to C̃z = d̃

I vector z contains the Tn + (T − 1)m variables:

z = (x1, . . . ,xT ,u1, . . . ,uT−1)
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Constrained least squares formulation

Ã =



C1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · CT 0 · · · 0
0 · · · 0

√
ρI · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · √
ρI



, b̃ = 0

C̃ =



A1 −I 0 · · · 0 0 B1 0 · · · 0
0 A2 −I · · · 0 0 0 B2 · · · 0
...

...
...

...
...

...
...
. . .

...
0 0 0 · · · AT−1 −I 0 0 · · · BT−1
I 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 I 0 0 · · · 0



, d̃ =



0
0
...
0

xinit

xdes
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Example

I time-invariant system: system matrices are constant

A =


0.855 1.161 0.667
0.015 1.073 0.053
−0.084 0.059 1.022


, B =



−0.076
−0.139

0.342


,

C =
[

0.218 −3.597 −1.683
]

I initial condition xinit = (0.496,−0.745,1.394)

I target or desired final state xdes = 0

I T = 100
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Optimal trade-off curve
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Three points on the trade-off curve
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Linear state feedback control

I linear state feedback control uses the input

ut = Kxt, t = 1,2, . . .

I K is state feedback gain matrix
I widely used, especially when xt should converge to zero, T is not specified

I one choice for K: solve linear quadratic control problem with xdes = 0
I solution ut is a linear function of xinit, hence u1 can be written as

u1 = Kxinit

I columns of K can be found by computing u1 for xinit = e1, . . . ,en

I use this K as state feedback gain matrix
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Example
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I system matrices of previous example
I blue curve uses optimal linear quadratic control for T = 100
I red curve uses simple linear state feedback ut = Kxt
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Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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State estimation

I linear dynamical system model:

xt+1 = Atxt + Btwt, yt = Ctxt + vt, t = 1,2, . . .

I xt is state (n-vector)

I yt is measurement (p-vector)

I wt is input or process noise (m-vector)

I vt is measurement noise or measurement residual (p-vector)

I we know At, Bt, Ct, and measurements y1, . . . ,yT

I wt,vt are unknown, but assumed small

I state estimation: estimate/guess x1, . . . ,xT
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Least squares state estimation

minimize Jmeas + λJproc
subject to xt+1 = Atxt + Btwt, t = 1, . . . ,T − 1

I variables: states x1, . . . ,xT and input noise w1, . . . ,wT−1

I primary objective Jmeas is sum of squares of measurement residuals:

Jmeas = ‖C1x1 − y1‖2 + · · · + ‖CTxT − yT ‖2

I secondary objective Jproc is sum of squares of process noise

Jproc = ‖w1‖2 + · · · + ‖wT−1‖2

I λ > 0 is a parameter, trades off measurement and process errors
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Constrained least squares formulation

minimize ‖C1x1 − y1‖2 + · · · + ‖CTxT − yT ‖2 + λ(‖w1‖2 + · · · + ‖wT−1‖2)
subject to xt+1 = Atxt + Btwt, t = 1, . . . ,T − 1

I can be written as
minimize ‖Ãz − b̃‖2
subject to C̃z = d̃

I vector z contains the Tn + (T − 1)m variables:

z = (x1, . . . ,xT ,w1, . . . ,wT−1)
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Constrained least squares formulation

Ã =



C1 0 · · · 0 0 · · · 0
0 C2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · CT 0 · · · 0
0 0 · · · 0

√
λI · · · 0

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · √
λI



, b̃ =



y1
y2
...

yT

0
...
0



C̃ =



A1 −I 0 · · · 0 0 B1 0 · · · 0
0 A2 −I · · · 0 0 0 B2 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · AT−1 −I 0 0 · · · BT−1



, d̃ = 0
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Missing measurements

I suppose we have measurements yt for t ∈ T , a subset of {1, . . . ,T }
I measurements for t ∈ T are missing

I to estimate states, use same formulation but with

Jmeas =
∑
t∈T
‖Ctxt − yt‖2

I from estimated states x̂t, can estimate missing measurements

ŷt = Ctx̂t, t < T
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Example

At =



1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



, Bt =



0 0
0 0
1 0
0 1



, Ct =

[
1 0 0 0
0 1 0 0

]

I simple model of mass moving in a 2-D plane

I xt = (pt,zt): 2-vector pt is position, 2-vector zt is the velocity

I yt = Ctxt + wt is noisy measurement of position

I T = 100
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Measurements and true positions

0 100 200 300

−1500

−1000

−500

0
t = 1

t = 100

(xt)1

(x
t)

2

I solid line is exact position Ctxt

I 100 noisy measurements yt shown as circles
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Position estimates

λ = 1 λ = 103 λ = 105

blue lines show position estimates for three values of λ
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Cross-validation

I randomly remove 20% (say) of the measurements and use as test set

I for many values of λ, estimate states using other (training) measurements

I for each λ, evaluate RMS measurement residuals on test set

I choose λ to (approximately) minimize the RMS test residuals
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Example
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I cross-validation method applied to previous example
I remove 20 of the 100 measurements
I suggests using λ ≈ 103
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18. Nonlinear least squares
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Nonlinear equations

I set of m nonlinear equations in n unknowns x1, . . . ,xn:

fi(x1, . . . ,xn) = 0, i = 1, . . . ,m

I fi(x) = 0 is the ith equation; fi(x) is the ith residual

I n-vector of unknowns x = (x1, . . . ,xn)

I write as vector equation f (x) = 0 where f : Rn → Rm,

f (x) = (f1(x), . . . , fm(x))

I when f is affine, reduces to set of m linear equations

I over-determined if m > n, under-determined if m < n, square if m = n
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Nonlinear least squares

I find x̂ that minimizes

‖f (x)‖2 = f1(x)2 + · · · + fm(x)2

I includes problem of solving equations f (x) = 0 as special case

I like (linear) least squares, super useful on its own
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Optimality condition

I optimality condition: ∇‖f (x̂)‖2 = 0

I any optimal point satisfies this

I points can satisfy this and not be optimal

I can be expressed as 2Df (x̂)T f (x̂) = 0

I Df (x̂) is the m × n derivative or Jacobian matrix,

Df (x̂)ij =
∂fi
∂xj

(x̂), i = 1, . . . ,m, j = 1, . . . ,n

I optimality condition reduces to normal equations when f is affine
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Difficulty of solving nonlinear least squares problem

I solving nonlinear equations or nonlinear least squares problem is (in
general) much harder than solving linear equations

I even determining if a solution exists is hard

I so we will use heuristic algorithms:
– not guaranteed to always work
– but often work well in practice

(like k-means)
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Computing equilibrium points

I equilibrium prices: find n-vector of prices p for which S(p) = D(p)
– S(p) is supply of n goods as function of prices
– D(p) is demand for n goods as function of prices
– take f (p) = S(p) − D(p)

I chemical equilibrium: find n-vector of concentrations c so C(c) = G(c)
– C(c) is consumption of species as function of c
– G(c) is generation of species as function of c
– take f (c) = C(c) − G(c)
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Location from range measurements

I 3-vector x is position in 3-D, which we will estimate

I range measurements give (noisy) distance to known locations

ρi = ‖x − ai‖ + vi, i = 1, . . . ,m

ai are known locations, vi are noises

I least squares location estimation: choose x̂ that minimizes

m∑
i=1

(‖x − ai‖ − ρi)2

I GPS works like this
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The basic idea

I at any point z we can form the affine approximation

f̂ (x; z) = f (z) + Df (z)(x − z)

I f̂ (x; z) ≈ f (x) provided x is near z

I we can minimize ‖ f̂ (x; z)‖2 using linear least squares

I we’ll iterate, with z the current iterate

Introduction to Applied Linear Algebra Boyd & Vandenberghe 18.10



Levenberg–Marquardt algorithm

I iterates x(1) ,x(2) , . . .

I at iteration k, form affine approximation of f at x(k) :

f̂ (x; x(k)) = f (x(k)) + Df (x(k))(x − x(k))

I choose x(k+1) as minimizer of

‖ f̂ (x; x(k))‖2 + λ (k) ‖x − x(k) ‖2 (where λ (k) > 0)

I we want ‖ f̂ (x; x(k))‖2 small, but we don’t want to move too far from x(k) ,
where f̂ (x; x(k)) ≈ f (x) no longer holds
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Levenberg–Marquardt iteration

I x(k+1) is solution of least squares problem

minimize ‖f (x(k)) + Df (x(k))(x − x(k))‖2 + λ (k) ‖x − x(k) ‖2

I solution is

x(k+1) = x(k) −
(
Df (x(k))TDf (x(k)) + λ (k)I

)−1
Df (x(k))T f (x(k))

I inverse always exists (since λ (k) > 0)

I x(k+1) = x(k) only if Df (x(k))T f (x(k)) = 0, i.e., optimality condition holds
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Adjusting λ (k)

idea:

I if λ (k) is too big, x(k+1) is too close to x(k) , and progress is slow
I if too small, x(k+1) may be far from x(k) and affine approximation is poor

update mechanism:

I if ‖f (x(k+1))‖2 < ‖f (x(k))‖2, accept new x and reduce λ

λ (k+1) = 0.8λ (k)

I otherwise, increase λ and do not update x:

λ (k+1) = 2λ (k) , x(k+1) = x(k)
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Example: Location from range measurements

I range to 5 points (blue circles)
I red square shows x̂
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x 2

contour lines of ‖f (x)‖2

0 1 2 3 4 0
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graph of ‖f (x)‖
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Levenberg–Marquardt from three initial points
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4
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x 2

Introduction to Applied Linear Algebra Boyd & Vandenberghe 18.15



Levenberg–Marquardt from three initial points
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Nonlinear model fitting

minimize
N∑

i=1

( f̂ (x(i); θ) − y(i))2

I x(1) , . . . ,x(N) are feature vectors
I y(1) , . . . , y(N) are associated outcomes
I model f̂ (x; θ) is parameterized by parameters θ1, . . . , θp

I this generalizes the linear in parameters model

f̂ (x; θ) = θ1f1(x) + · · · + θpfp(x)

I here we allow f̂ (x, θ) to be a nonlinear function of θ
I the minimization is over the model parameters θ
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Example

f̂ (x; θ)

f̂ (x; θ) = θ1 exp(θ2x) cos(θ3x + θ4)

x

a nonlinear least squares problem with four variables θ1, θ2, θ3, θ4:

minimize
N∑

i=1

(
θ1eθ2x(i)

cos(θ3x(i) + θ4) − y(i))
)2
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Orthogonal distance regression

I to fit model, minimize sum square distance of data points to graph
I example: orthogonal distance regression to cubic polynomial

x

f̂ (x; θ)
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Nonlinear least squares formulation

minimize
N∑

i=1

(
(f̂ (u(i); θ) − y(i))2 + ‖u(i) − x(i) ‖2

)
I optimization variables are model parameters θ and N points u(i)

I ith term is squared distance of data point (x(i) ,y(i)) to point (u(i) , f̂ (u(i) , θ))

di

(x(i) ,y(i))

(u(i); f̂ (u(i) , θ))

d2
i = (f̂ (u(i); θ) − y(i))2 + ‖u(i) − x(i) ‖2

I minimizing over u(i) gives squared distance of (x(i) ,y(i)) to graph
I minimizing over u(1) , . . . , u(N) and θ minimizes the sum square distance
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Nonlinear least squares classification

linear least squares classifier:

I classifier is f̂ (x) = sign (f̃ (x)) where f̃ (x) = θ1f1(x) + · · · + θpfp(x)

I θ is chosen by minimizing
∑N

i=1(f̃ (xi) − yi)2 (plus optionally regularization)

nonlinear least squares classifier:

I choose θ to minimize

N∑
i=1

(sign(f̃ (xi)) − yi)2 = 4 × number of errors

I replace sign function with smooth approximation φ, e.g., sigmoid function
I use Levenberg–Marquardt to minimize

∑N
i=1(φ(f̃ (xi)) − yi)2
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Sigmoid function

−4 −2 2 4

−1

1φ(u) =
eu − e−u

eu + e−u

u

φ(u)
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Example

I MNIST data set; feature vector x is 493-vector of pixel intensities
I nonlinear least squares 10-way multi-class classifier: 7.5% test error
I Boolean classifiers computed by solving nonlinear least squares problems

minimize
N∑

i=1

(φ((x(i))T β + v) − y(i))2 + λ‖ β‖2
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%
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Feature engineering

I add 5000 random features as before

I test set error drops to 2%

I this matches human performance

I with more feature engineering, can substantially beat human performance
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Constrained nonlinear least squares

I add equality constraints to nonlinear least squares problem:

minimize f1(x)2 + · · · + fm(x)2

subject to g1(x) = 0, . . . , gp(x) = 0

I fi(x) is ith (scalar) residual; gi(x) = 0 is ith (scalar) equality constraint

I with vector notation f (x) = (f1(x), . . . , fm(x)), g(x) = (g1(x), . . . ,gp(x))

minimize ‖f (x)‖2
subject to g(x) = 0

I x is feasible if it satisfies the constraints g(x) = 0

I x̂ is a solution if it is feasible and ‖f (x)‖2 ≥ ‖f (x̂)‖2 for all feasible x

I problem is difficult to solve in general, but useful heuristics exist
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Lagrange multipliers

I the Lagrangian of the problem is the function

L(x,z) = ‖f (x)‖2 + z1g1(x) + · · · + zmgm(x)
= ‖f (x)‖2 + g(x)Tz

I p-vector z = (z1, . . . ,zp) is vector of Lagrange multipliers

I method of Lagrange multipliers: if x̂ is a solution, then there exists ẑ with

∂L
∂xi

(x̂, ẑ) = 0, i = 1, . . . ,n.
∂L
∂zi

(x̂, ẑ) = 0, i = 1, . . . ,p

(provided the gradients ∇g1(x̂), . . . , ∇gp(x̂) are linearly independent)

I ẑ is called an optimal Lagrange multiplier

Introduction to Applied Linear Algebra Boyd & Vandenberghe 19.3



Optimality condition

I gradient of Lagrangian with respect to x is

∇xL(x̂, ẑ) = 2Df (x̂)T f (x̂) + Dg(x̂)T ẑ

I gradient with respect to z is

∇zL(x̂, ẑ) = g(x̂)

I optimality condition: if x̂ is optimal, then there exists ẑ such that

2Df (x̂)T f (x̂) + Dg(x̂)T ẑ = 0, g(x̂) = 0

(provided the rows of Dg(x̂) are linearly independent)

I this condition is necessary for optimality but not sufficient
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Constrained (linear) least squares

I recall constrained least squares problem

minimize ‖Ax − b‖2
subject to Cx = d

I a special case of the nonlinear problem with f (x) = Ax − b, g(x) = Cx − d

I apply general optimality condition:

2Df (x̂)T f (x̂) + Dg(x̂)T ẑ = 2AT (Ax̂ − b) + CT ẑ = 0, g(x̂) = Cx̂ − d = 0

I these are the KKT equations
[

2ATA CT

C 0

] [
x̂
ẑ

]
=

[
2ATb

d

]
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Penalty method

I solve sequence of (unconstrained) nonlinear least squares problems

minimize ‖f (x)‖2 + µ‖g(x)‖2 =


[
f (x)√
µg(x)

]

2

I µ is a positive penalty parameter

I instead of insisting on g(x) = 0 we assign a penalty to deviations from zero

I for increasing sequence µ(1) , µ(2) , . . . , compute x(k+1) by minimizing

‖f (x)‖2 + µ(k) ‖g(x)‖2

I x(k+1) is computed by Levenberg–Marquardt algorithm started at x(k)
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Termination

I recall optimality condition

2Df (x̂)T f (x̂) + Dg(x̂)T ẑ = 0, g(x̂) = 0

I x(k) satisfies normal equations for linear least squares problem:

2Df (x(k))T f (x(k)) + 2µ(k−1)Dg(x(k))Tg(x(k)) = 0

I if we define z(k) = 2µ(k−1)g(x(k)), this can be written as

2Df (x(k))T f (x(k)) + Dg(x(k))Tz(k) = 0

I we see that x(k) , z(k) satisfy first equation in optimality condition

I feasibility g(x(k)) = 0 is only satisfied approximately for µ(k−1) large enough

I penalty method is terminated when ‖g(x(k))‖ becomes sufficiently small
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Example

f (x1,x2) =
[

x1 + exp(−x2)
x2

1 + 2x2 + 1

]
, g(x1,x2) = x1 + x3

1 + x2 + x2
2
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g(x) = 0

g(x) = −1

g(x) = 1

x̂

x1

x 2

I solid: contour lines of ‖f (x)‖2
I dashed: contour lines of g(x)
I x̂ is solution
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First six iterations
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Convergence

0 50 10010−6

10−2

102

Cumulative L–M iterations

Re
si

du
al

Feas.
Opt.

0 50 100
100

102

104

Cumulative L–M iterations

Pe
na

lty
pa

ra
m

et
er
µ

I figure on the left shows residuals in optimality condition
I blue curve is norm of g(x(k))
I red curve is norm of 2Df (x(k))T f (x(k)) + Dg(x(k))Tz(k)
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Drawback of penalty method

I µ(k) increases rapidly and must become large to drive g(x) to (near) zero

I for large µ(k) , nonlinear least squares subproblem becomes harder

I for large µ(k) , Levenberg–Marquardt method can take a large number of
iterations, or fail
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Augmented Lagrangian

I the augmented Lagrangian for the constrained NLLS problem is

Lµ (x,z) = L(x,z) + µ‖g(x)‖2
= ‖f (x)‖2 + g(x)Tz + µ‖g(x)‖2

I this is the Lagrangian L(x,z) augmented with a quadratic penalty

I µ is a positive penalty parameter

I augmented Lagrangian is the Lagrangian of the equivalent problem

minimize ‖f (x)‖2 + µ‖g(x)‖2
subject to g(x) = 0
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Minimizing augmented Lagrangian

I equivalent expressions for augmented Lagrangian

Lµ (x,z) = ‖f (x)‖2 + g(x)Tz + µ‖g(x)‖2

= ‖f (x)‖2 + µ‖g(x) +
1

2µ
z‖2 − 1

2µ
‖z‖2

=


[
f (x)√

µg(x) + z/(2
√
µ)

]

2

− 1
2µ
‖z‖2

I can be minimized over x (for fixed µ, z) by Levenberg–Marquardt method:

minimize


[
f (x)√

µg(x) + z/(2
√
µ)

]

2
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Lagrange multiplier update

I minimizer x̃ of augmented Lagrangian Lµ (x,z) satisfies

2Df (x̃)T f (x̃) + Dg(x̃)T (2µg(x̃) + z) = 0

I if we define z̃ = z + 2µg(x̃) this can be written as

2Df (x̃)T f (x̃) + Dg(x̃)T z̃ = 0

I this is the first equation in the optimality conditions

2Df (x̂)T f (x̂) + Dg(x̂)T ẑ = 0, g(x̂) = 0

I shows that if g(x̃) = 0, then x̃ is optimal

I if g(x̃) is not small, suggests z̃ is a good update for z
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Augmented Lagrangian algorithm

1. set x(k+1) to be the (approximate) minimizer of

‖f (x)‖2 + µ(k) ‖g(x) + z(k)/(2µ(k))‖2

using Levenberg–Marquardt algorithm, starting from initial point x(k)

2. multiplier update:

z(k+1) = z(k) + 2µ(k)g(x(k+1)).

3. penalty parameter update:

µ(k+1) = µ(k) if ‖g(x(k+1))‖ < 0.25‖g(x(k))‖, µ(k+1) = 2µ(k) otherwise

I iteration starts at z(1) = 0, µ(1) = 1, some initial x(1)

I µ is increased only when needed, more slowly than in penalty method
I continues until g(x(k)) is sufficiently small (or iteration limit is reached)
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Example of slide 19.9
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Convergence
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I figure on the left shows residuals in optimality condition
I blue curve is norm of g(x(k))
I red curve is norm of 2Df (x(k))T f (x(k)) + Dg(x(k))Tz(k)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 19.19



Outline

Constrained nonlinear least squares

Penalty method

Augmented Lagrangian method

Nonlinear control example

Introduction to Applied Linear Algebra Boyd & Vandenberghe 19.20



Simple model of a car

L

θ

φ

(p1,p2)

dp1

dt
= s(t) cos θ(t)

dp2

dt
= s(t) sin θ(t)

dθ
dt

=
s(t)
L

tan φ(t)

I s(t) is speed of vehicle, φ(t) is steering angle

I p(t) is position, θ(t) is orientation

Introduction to Applied Linear Algebra Boyd & Vandenberghe 19.21



Discretized model

I discretized model (for small time interval h):

p1(t + h) ≈ p1(t) + hs(t) cos(θ(t))
p2(t + h) ≈ p2(t) + hs(t) sin(θ(t))

θ(t + h) ≈ θ(t) + h
s(t)
L

tan(φ(t))

I define input vector uk = (s(kh), φ(kh))

I define state vector xk = (p1(kh),p2(kh), θ(kh))

I discretized model is xk+1 = f (xk,uk) with

f (xk,uk) =


(xk)1 + h(uk)1 cos((xk)3)
(xk)2 + h(uk)1 sin((xk)3)

(xk)3 + h(uk)1 tan((uk)2)/L
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Control problem

I move car from given initial to desired final position and orientation

I using a small and slowly varying input sequence

I this is a constrained nonlinear least squares problem:

minimize
N∑

k=1
‖uk‖2 + γ

N−1∑
k=1
‖uk+1 − uk‖2

subject to x2 = f (0,u1)
xk+1 = f (xk,uk), k = 2, . . . ,N − 1
xfinal = f (xN ,uN )

I variables are u1, . . . ,uN , x2, . . . ,xN
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Four solution trajectories
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Inputs for four trajectories
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